Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Pharmacology

Humans

Articles 1 - 3 of 3

Full-Text Articles in Cancer Biology

Role Of Hypoxia And Glycolysis In The Development Of Multi-Drug Resistance In Human Tumor Cells And The Establishment Of An Orthotopic Multi-Drug Resistant Tumor Model In Nude Mice Using Hypoxic Pre-Conditioning, Lara Milane, Zhenfeng Duan, Mansoor M. Amiji Sep 2011

Role Of Hypoxia And Glycolysis In The Development Of Multi-Drug Resistance In Human Tumor Cells And The Establishment Of An Orthotopic Multi-Drug Resistant Tumor Model In Nude Mice Using Hypoxic Pre-Conditioning, Lara Milane, Zhenfeng Duan, Mansoor M. Amiji

Mansoor M. Amiji

Background The development of multi-drug resistant (MDR) cancer is a significant challenge in the clinical treatment of recurrent disease. Hypoxia is an environmental selection pressure that contributes to the development of MDR. Many cancer cells, including MDR cells, resort to glycolysis for energy acquisition. This study aimed to explore the relationship between hypoxia, glycolysis, and MDR in a panel of human breast and ovarian cancer cells. A second aim of this study was to develop an orthotopic animal model of MDR breast cancer. Methods Nucleic and basal protein was extracted from a panel of human breast and ovarian cancer cells; …


Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman May 2011

Variations In Mre11/Rad50/Nbs1 Status And Dna Damage-Induced S-Phase Arrest In The Cell Lines Of The Nci60 Panel, Kristen M. K. Garner, Alan Eastman

Dartmouth Scholarship

The Mre11/Rad50/Nbs1 (MRN) complex is a regulator of cell cycle checkpoints and DNA repair. Defects in MRN can lead to defective S-phase arrest when cells are damaged. Such defects may elicit sensitivity to selected drugs providing a chemical synthetic lethal interaction that could be used to target therapy to tumors with these defects. The goal of this study was to identify these defects in the NCI60 panel of cell lines and identify compounds that might elicit selective cytotoxicity.


Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2002

Ube1l Is A Retinoid Target That Triggers Pml/Rarα Degradation And Apoptosis In Acute Promyelocytic Leukemia, Sutisak Kitareewan, Ian Pitha-Rowe, David Sekula, Christopher H. Lowrey, Michael J. Nemeth, Todd R. Golub, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

All-trans-retinoic acid (RA) treatment induces remissions in acute promyelocytic leukemia (APL) cases expressing the t(15;17) product, promyelocytic leukemia (PML)/RA receptor α (RARα). Microarray analyses previously revealed induction of UBE1L (ubiquitin-activating enzyme E1-like) after RA treatment of NB4 APL cells. We report here that this occurs within 3 h in RA-sensitive but not RA-resistant APL cells, implicating UBE1L as a direct retinoid target. A 1.3-kb fragment of the UBE1L promoter was capable of mediating transcriptional response to RA in a retinoid receptor-selective manner. PML/RARα, a repressor of RA target genes, abolished this UBE1L promoter activity. A hallmark of …