Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Mitochondria

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 53

Full-Text Articles in Biochemistry

Is Vdac1 A Novel Bcl2 Family Member That Binds Bax?, Claire Pearson May 2023

Is Vdac1 A Novel Bcl2 Family Member That Binds Bax?, Claire Pearson

Honors Theses

Apoptosis is a type of regulated cell death important for normal embryonic development and maintenance of adult tissues by removing excess or dysfunctional cells to ensure proper functioning of organs. The Bcl-2 family of proteins determines whether apoptosis remains suppressed or becomes activated through the balance of interactions among pro-survival and pro-death members. A defining feature of the Bcl-2 family is a BH3 domain that drives interactions between the family members. Isoform 1 of the voltage dependent anion channel (VDAC1) has an important role in metabolism, but was recently found to have high homology with known BH3 domains. This study …


Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie May 2023

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie

Dissertations and Theses

Offspring of diabetic and obese mothers (ODOM) have greater risks of heart disease at birth and later in life. However, prevention is hindered because underlying mechanisms are poorly understood. Mounting studies in the Developmental Origins of Health and Disease field suggest that mitochondria play key roles in developmentally programmed heart disease similar to the roles they play in cardiomyopathy in adults with diabetes and obesity. However, whether mitochondria are responsible for the short[1]and long-term cardiac disease seen in ODOM remains unknown. Here, we sought to delineate the roles of mitochondria in the hearts of ODOM, determine whether mitochondria are playing …


Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter May 2023

Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter

Biomedical Engineering Theses & Dissertations

Pulsed power treatment has been used to induce regulated cell death (RCD) in cells or ablate tumors in animals. A subset of pulsed power as electroporation with high voltage and pulse duration of milliseconds is used for biomedical treatment to induce pores in the plasma membrane of cells. Nanosecond Pulsed Electric Fields (nsPEFs)– an extension of electroporation, uses waveforms with pulse durations on the order of 10-900 nanoseconds. nsPEF treatment has demonstrated intracellular effects for potential biomedical applications. In this work, nsPEF treatment is used to demonstrate changes that affect viability, plasma membrane permeability ROS (Reactive Oxygen Species) in the …


Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar Jan 2023

Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Chronic, low-grade systemic inflammation rises in obesity and promotes type 2 diabetes (T2D). Circulating immune cells are key indicators of obesity and T2D pathogenesis. T cells outnumber monocytes, in blood, suggesting that T cells might fuel peripheral inflammation in obesity/T2D. Our lab’s work supports this idea by identification of a Th17 cytokine profile in T2D from T-cell stimulated peripheral blood mononuclear cells. Work described herein further supported this work by demonstrating that T cells dominate peripheral inflammation over monocytes across the spectrum of obesity and glycemic control. Our lab has also recently shown that inflammation changes during prediabetes (preT2D), identified …


Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill Dec 2022

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill

SURE Journal: Science Undergraduate Research Experience Journal

Mitochondria are cytoplasmic, double-membrane organelles that synthesise adenosine triphosphate (ATP). Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is maternally inherited from the oocyte. Mitochondrial proteins are encoded by either nuclear DNA (nDNA) or mtDNA, and both code for proteins forming the mitochondrial oxidative phosphorylation (OXPHOS) complexes of the respiratory chain. These complexes form a chain that allows the passage of electrons down the electron transport chain (ETC) through a proton motive force, creating ATP from adenosine diphosphate (ADP). This study aims to explore current and prospective therapies for mitochondrial disorders (MTDS). MTDS are clinical syndromes coupled with abnormalities …


The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter Dec 2022

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter

Theses & Dissertations

Mitochondria are at the center of biological phenomena such as aging and diseases, especially neurodegenerative diseases. While the discovery of mitochondria only came approximately 200 years after the cell was discovered, a lot of progress has been made since. The mitochondrial genome encodes proteins vital for mitochondrial function. These proteins are only a subset of the proteins present in mitochondria; the rest are nuclear encoded. The nucleus also encodes cytosolic proteins vital for mitochondrial maintenance. One of these is Parkin, an E3 ubiquitin ligase that ubiquitinates mitochondrial proteins as mitochondria become depolarized. Its activity has been shown to be involved …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Editorial: Function And Formation Of Mitochondrial Metalloproteome, Michał Wasilewski, Vishal M. Gohil, Oleh Khalimonchuk Sep 2022

Editorial: Function And Formation Of Mitochondrial Metalloproteome, Michał Wasilewski, Vishal M. Gohil, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

No abstract provided.


Loss Of Num1-Mediated Cortical Dynein Anchoring Negatively Impacts Respiratory Growth, Antoineen J. White, Clare S. Harper, Erica M. Rosario, Jonathan V. Dietz, Hannah G. Addis, Jennifer L. Fox, Oleh Khalimonchuk, Laura L. Lackner Sep 2022

Loss Of Num1-Mediated Cortical Dynein Anchoring Negatively Impacts Respiratory Growth, Antoineen J. White, Clare S. Harper, Erica M. Rosario, Jonathan V. Dietz, Hannah G. Addis, Jennifer L. Fox, Oleh Khalimonchuk, Laura L. Lackner

Department of Biochemistry: Faculty Publications

Num1 is a multifunctional protein that both tethers mitochondria to the plasma membrane and anchors dynein to the cell cortex during nuclear inheritance. Previous work has examined the impact loss of Num1-based mitochondrial tethering has on dynein function in Saccharomyces cerevisiae; here, we elucidate its impact on mitochondrial function. We find that like mitochondria, Num1 is regulated by changes in metabolic state, with the protein levels and cortical distribution of Num1 differing between fermentative and respiratory growth conditions. In cells lacking Num1, we observe a reproducible respiratory growth defect, suggesting a role for Num1 in not only maintaining mitochondrial …


Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai Aug 2022

Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai

Department of Biochemistry: Faculty Publications

No abstract provided.


Studying Acetylation Of Aconitase Isozymes By Genetic Code Expansion, Jessica Araujo May 2022

Studying Acetylation Of Aconitase Isozymes By Genetic Code Expansion, Jessica Araujo

Graduate Theses and Dissertations

The tricarboxylic acid (TCA) cycle is a very important, centrally located, energy-producing pathway that connects numerous other metabolic and regulatory pathways. Enzymes of this cycle have been more recently implicated in various cancers and neurometabolic disorders, however, the exact mechanism by which this happens becomes quite complex when considering the potential modification of these enzymes and the presence of multiple forms of the enzymes and therefore there is much to be studied in this area.

Aconitase has become a recent enzyme of interest as its substrate, citrate, has been found to play a major role in many vital processes within …


Mitochondrial Metal Homeostasis: A Look Into Iron And Copper Mobilization Within Mitochondria, Jonathan Dietz Nov 2021

Mitochondrial Metal Homeostasis: A Look Into Iron And Copper Mobilization Within Mitochondria, Jonathan Dietz

Department of Biochemistry: Dissertations, Theses, and Student Research

Cellular iron and copper homeostasis is interdependent with mitochondrial iron and copper homeostasis. Mitochondria must import iron to form iron-sulfur clusters and heme, while it must import copper for usage and storage. These cofactors are incorporated into mitochondrial proteins that support essential functions, including cellular respiration and maintaining redox homeostasis. In turn, mitochondria also provide heme to the cell and enables the biogenesis of cytosolic iron-sulfur cluster containing proteins, while also providing copper when needed. Due to both metals (and their modified species) reactivity, iron and copper are stored and trafficked within the mitochondria carefully. Although these cofactors are crucial …


Mitochondrial Contact Site And Cristae Organizing System (Micos) Machinery Supports Heme Biosynthesis By Enabling Optimal Performance Of Ferrochelatase, Jonathan V. Dietz, Mathilda M. Willoughby, Robert B. Piel, Teresa A. Ross, Iryna Bohovych, Hannah G. Addis, Jennifer L. Fox, William N. Lanzilotta, Harry A. Dailey, James A. Wohlschlegel, Amit R. Reddi, Amy E. Medlock, Oleh Khalimonchuk Oct 2021

Mitochondrial Contact Site And Cristae Organizing System (Micos) Machinery Supports Heme Biosynthesis By Enabling Optimal Performance Of Ferrochelatase, Jonathan V. Dietz, Mathilda M. Willoughby, Robert B. Piel, Teresa A. Ross, Iryna Bohovych, Hannah G. Addis, Jennifer L. Fox, William N. Lanzilotta, Harry A. Dailey, James A. Wohlschlegel, Amit R. Reddi, Amy E. Medlock, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and …


Evaluating Bioenergetics And Mitochondrial Dynamics In Patient Fibroblasts With Pathogenic Mitochondrial Dna Mutations Causing Leigh Syndrome, Ajibola Bakare Jul 2021

Evaluating Bioenergetics And Mitochondrial Dynamics In Patient Fibroblasts With Pathogenic Mitochondrial Dna Mutations Causing Leigh Syndrome, Ajibola Bakare

Graduate Theses and Dissertations

Leigh syndrome (LS) is a rare fatal mitochondrial disorder of infants caused by pathogenic mutations in the nuclear (nDNA) or mitochondrial DNA (mtDNA) leading to mitochondrial dysfunction. The extent to which pathogenic mtDNA variants regulate disease severity in LS is not well understood. The heterogeneous nature of this disorder, based in part by complex mitochondrial genetics, and the nuclear and mitochondrial cross-talk has made it particularly challenging to investigate and develop therapies for treating LS . While the prognosis is poor, several studies are underway to understand the pathophysiology of LS. This dissertation provides a comprehensive structural and functional analysis …


Using Crispr-Cas9 To Construct Knockout Mutants In Dna-Repair Genes In Arabidopsis Thaliana, David Campbell Mar 2021

Using Crispr-Cas9 To Construct Knockout Mutants In Dna-Repair Genes In Arabidopsis Thaliana, David Campbell

Honors Theses

The mitochondria are known as the powerhouse of the cell, and just like a real powerhouse, it can be a dangerous place to store sensitive information. Energy generation and redox reactions in the mitochondria can cause damage to the DNA stored there, resulting in a higher mutation rate. Compared to their animal counterparts, however, plant mitochondria exhibit a lower mutation rate and a higher recombination rate. It is hypothesized that the unique DNA repair methods present in plant mitochondria are responsible for the phenomena observed there. To study the mechanics of DNA-repair in this organelle, however, researchers must be able …


Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck Jan 2021

Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck

Wayne State University Dissertations

Mitochondria are complex organelles that generate most of the energy required to sustain life and function in metabolic and signaling pathways required to maintain cellular homeostasis. MNRR1 (mitochondrial nuclear retrograde regulator 1 or CHCHD2) is a small, bi-organellar twin CX9C protein that is emerging as an important regulator of mitochondrial function, apoptosis, and cellular stress by participating in mitochondrial-nuclear crosstalk. Our lab has previously shown that in the mitochondria, MNRR1 regulates complex IV (Cytochrome c oxidase or COX) and is able to finetune the oxidase function through phosphorylation status. We have also shown that during stress, mitochondrial MNRR1 levels deplete, …


Huntingtin Aggregation At Interfaces Associated With Membranes And Organelles, Adewale Vincent Adegbuyiro Jan 2021

Huntingtin Aggregation At Interfaces Associated With Membranes And Organelles, Adewale Vincent Adegbuyiro

Graduate Theses, Dissertations, and Problem Reports

Huntington’s Disease (HD) is a genetic neurodegenerative disease caused by the expansion of polyglutamine (polyQ) domain within the first exon (exon1) of the huntingtin (htt) protein. Due to this mutation within the polyQ domain, htt aggregates into various toxic species such as oligomers, fibrils, and other amorphous aggregates. While the aggregation of htt strongly correlates with polyQ length, other factors, e.g. interaction with membranes or organelles and posttranslational modifications (PTMs), modulate aggregation. The first 17 N-terminal amino acids (Nt17) that precede the polyQ in htt-exon1 enhances aggregation and facilitated binding of htt to membranous organelles, promoting morphological changes and disfunction. …


Investigation Of Shot1-Binding Atpases In Arabidopsis Thaliana, Sam Zelman Dec 2020

Investigation Of Shot1-Binding Atpases In Arabidopsis Thaliana, Sam Zelman

Masters Theses

Mitochondria play critical roles not only in primary metabolism as a central organelle for ATP generation, but also in responding to abiotic stresses. We identified a mutation in the MTERF18 (Mitochondrial Transcription Termination factor)/SHOT1 (Suppressor of hot1-4 1) gene in Arabidopsis thaliana that enables plants to better tolerate heat and oxidative stresses, presumably due to reduced oxidative damage, but the exact molecular mechanism of the heat tolerance is unknown. In order to reveal the stress tolerance mechanisms of mterf18/shot1 mutations, it is critical to understand the molecular defects of the mutant and to identify …


Protease Oma1 Modulates Mitochondrial Bioenergetics And Ultrastructure Through Dynamic Association With Micos Complex, Martonio P. Viana Jul 2020

Protease Oma1 Modulates Mitochondrial Bioenergetics And Ultrastructure Through Dynamic Association With Micos Complex, Martonio P. Viana

Department of Biochemistry: Dissertations, Theses, and Student Research

Remodeling of mitochondrial ultrastructure is a complex dynamic process that is critical for a variety of mitochondrial functions and apoptosis. Although the key regulators of this process - mitochondrial contact site and cristae junction organizing system (MICOS) and GTPase Optic Atrophy 1 (OPA1) have been characterized, the mechanisms behind this regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for maintenance of contacts between the inner and outer membranes through a dynamic association with MICOS. This association is independent of OPA1, appears to be mediated via the MIC60 MICOS …


The Shape Of Metabolism: Mitochondrial Dynamics, Remodeling, And Bioenergetic Reprogramming In Disease, Carl Decker Jul 2020

The Shape Of Metabolism: Mitochondrial Dynamics, Remodeling, And Bioenergetic Reprogramming In Disease, Carl Decker

KGI Theses and Dissertations

Mitochondria are dynamic, double-membrane bound hubs of bioenergetics, cell signaling, and redox balance that exist as an oscillating network of fused superstructures and smaller, single organelles. Importantly, their position at the junction of catabolic and anabolic metabolism connects these morphological fluctuations to larger cellular metabolic programs, which in turn have implicated mitochondrial dynamics in a number of disease states and a varied set of cell phenomena. For example, differentiation of memory t-cells is dependent on mitochondrial network morphology, and in particular on remodeling dynamics that yield fused mitochondrial assemblies favoring oxidative phosphorylation-driven metabolism. In contrast, many cancers have been shown …


Acetoacetate Enhances Oxidative Metabolism And Response To Toxicants Of Cultured Renal Cells, Trudi Maria Denoon Jan 2020

Acetoacetate Enhances Oxidative Metabolism And Response To Toxicants Of Cultured Renal Cells, Trudi Maria Denoon

Theses and Dissertations

In vitro methods can be cost effective and facilitate large scale drug screening in the pharmaceutical industry. Renal proximal tubular cells have been a prime target for drug induced toxicity. LLC-PK1 cells possess many transport functions of the proximal tubule epithelia, however, its energy metabolism differs from the highly oxidative tubule metabolism in vivo. This may impact its reliability in predicting toxicity. Modulating the growth media composition has been shown to shift cultured liver and muscle cells from high glycolytic activity to increased oxidative metabolism, but few studies have been done on renal cells. This study is designed to test …


Quantification Of Mitochondrial Zinc Homeostasis And Analysis Of Zinc And Polyamine-Mediated Axonal Trafficking, Dylan Hunt Fudge Jan 2020

Quantification Of Mitochondrial Zinc Homeostasis And Analysis Of Zinc And Polyamine-Mediated Axonal Trafficking, Dylan Hunt Fudge

Electronic Theses and Dissertations

The zinc ion is an important emerging signaling molecule for biological processes. In this work we engineered improved zinc sensors based on our previously developed fluorescent sensor GZnP1 to provide sensors with a higher fluorescent readout, faster kinetics, and a superior sensitivity to zinc. We utilized these zinc sensors and further developed the sensors to answer questions pertaining to biological zinc. We showed the labile zinc concentration in the mitochondrial matrix was less than 1 pM while the labile zinc concentration in the cytosol and mitochondrial IMS were comparable (~100 pM) across four different cell lines. Using these zinc sensors …


Seasonal Variation In Mitochondrial Bioenergetics Of The Bluegill Sunfish, Lepomis Macrochirus, From A Shallow Midwest River, Derick Isaac Lamptey Jan 2020

Seasonal Variation In Mitochondrial Bioenergetics Of The Bluegill Sunfish, Lepomis Macrochirus, From A Shallow Midwest River, Derick Isaac Lamptey

Masters Theses

As average global temperature increase, the frequency and magnitude of extreme temperatures in shallow aquatic ecosystems are more ubiquitous. In order to understand how these changing thermal regimes affect aquatic ectotherms, it is essential to develop studies evaluating the response of ectotherms to seasonal fluctuating thermal regimes. Previous studies on fluctuating temperature regimes have reported an increased physiological stress leading to morphological, behavioral and biochemical adaptations. From the latter, the adaptive capacity and seasonal performance associated with optimal function of the oxidative phosphorylation system (OXPHOS) are key for species persistence. However, studies on this matter are scarce. This study explores …


From Synthesis To Utilization: The Ins And Outs Of Mitochondrial Heme, Samantha A. Swenson, Courtney M. Moore, Jason R. Marcero, Amy E. Medlock, Amit R. Reddi, Oleh Khalimonchuk Jan 2020

From Synthesis To Utilization: The Ins And Outs Of Mitochondrial Heme, Samantha A. Swenson, Courtney M. Moore, Jason R. Marcero, Amy E. Medlock, Amit R. Reddi, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme—a highly reactive and inherently toxic compound—and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.


Characterization Of The Biochemical Properties Of Nudt8, A Novel Coa-Degrading Enzyme That Localizes To The Mitochondria, Evan W. Kerr Jan 2020

Characterization Of The Biochemical Properties Of Nudt8, A Novel Coa-Degrading Enzyme That Localizes To The Mitochondria, Evan W. Kerr

Graduate Theses, Dissertations, and Problem Reports

Coenzyme A (CoA) is a vital cofactor that is required for a variety of metabolic reactions including the TCA cycle and the synthesis and oxidation of fatty acids, amino acids and ketone bodies. The importance of CoA is underscored by its tight regulation, as prolonged elevations or inability to synthesize adequate amounts of this cofactor lead to severe metabolic dysfunction. Regulation of CoA biosynthesis has been extensively characterized, however less is known about regulation of CoA and its thioesters via degradation. Presently, two CoA-degrading enzymes, Nudt7 and Nudt19 have been identified as regulators of the peroxisomal pool of (acyl-)CoA in …


Xenobiotic Exposure Requires Mitochondrial Metabolism For Redox Homeostasis And Survival In Astrocytes, Jordan Rose Dec 2019

Xenobiotic Exposure Requires Mitochondrial Metabolism For Redox Homeostasis And Survival In Astrocytes, Jordan Rose

Department of Biochemistry: Dissertations, Theses, and Student Research

Astrocytes are integral components of glutamatergic neurotransmission, providing essential metabolic processes for neuronal homeostasis and acting as the first line of defense against xenobiotics crossing the blood brain barrier. Arsenic is a xenobiotic with widespread natural and industrial prevalence, and has been linked to impaired neurodevelopment and neuronal death. Given the integrated metabolic nature of astrocytes and neurons, we sought to explore how arsenic impacts astrocyte metabolism in order to better understand the mechanisms of xenobiotic toxicity in the mammalian brain.

We demonstrate that astrocyte viability depends upon de novoglutathione (GSH) synthesis during arsenic exposure, and sub-lethal arsenic exposure …


Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett Oct 2019

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett

Doctoral Dissertations

Skeletal muscle oxidative capacity plays a critical role in human health and disease. Although current models of oxidative phosphorylation sufficiently describe skeletal muscle energetics during moderate-intensity contractions, much is still unknown about the mechanisms that control and limit oxidative phosphorylation during high-intensity contractions. In particular, the oxygen cost of force generation is augmented during exercise at workloads above the lactate threshold. Presently, it is unclear whether this augmentation in muscle oxygen consumption is driven by increased rates of oxidative ATP synthesis (ATPOX) or by decreases in the efficiency of ATPOX due to mitochondrial uncoupling. To address this …


Structure And Function Of Stomatin-Like Protein 2, Safee Mian Apr 2019

Structure And Function Of Stomatin-Like Protein 2, Safee Mian

Electronic Thesis and Dissertation Repository

Stomatin-like protein 2 (SLP-2), a member of the SPFH superfamily, is a mitochondrial inner membrane protein required for optimal mitochondrial respiration. SLP-2 binds to the important mitochondrial phospholipid cardiolipin (CL) and has been proposed to mediate formation of CL-enriched microdomains that would foster respiratory chain supercomplex (RCS) formation and stability. However, little is known about how SLP-2 structure facilitates its cellular function. The goal of this thesis was to elucidate if and how SLP-2 oligomerizes and by what means does it bind CL.

Biophysical analysis of the expressed SLP-2 SPFH domain, either with or without flanking residues, indicates it to …


Student-Faculty Collaborative Research Grant Report, Megan Bestwick Feb 2019

Student-Faculty Collaborative Research Grant Report, Megan Bestwick

Post-Grant Reports

Mitochondria are essential organelles in most eukaryotic cells because of their role in metabolism and the production of ATP by the oxidative phosphorylation (OXPHOS) pathway, as well as other key cellular processes. Metal cofactors, such as copper (Cu) and iron (Fe), are incorporated into OXPHOS protein complexes of yeast located within the inner membrane of the mitochondria. Misincorporation or modulation of these available metals in mitochondrial enzymes leads to the production of reactive oxygen species (ROS). ROS are reactive molecules containing oxygen such as peroxides, superoxide, and hydroxyl radicals. Yeast are a good model for studying aging and the effect …


Deletion Of Mgr2p Affects The Gating Behavior Of The Tim23 Complex, Oygul Mirzalieva, Shinhye Jeon, Kevin Damri, Ruth Hartke, Layla Drwesh, Keren Demishtein-Zohary, Abdussalam Azem, Cory D. Dunn, Pablo M. Peixoto Jan 2019

Deletion Of Mgr2p Affects The Gating Behavior Of The Tim23 Complex, Oygul Mirzalieva, Shinhye Jeon, Kevin Damri, Ruth Hartke, Layla Drwesh, Keren Demishtein-Zohary, Abdussalam Azem, Cory D. Dunn, Pablo M. Peixoto

Publications and Research

The TIM23 complex is a hub for translocation of preproteins into or across the mitochondrial inner membrane. This dual sorting mechanism is currently being investigated, and in yeast appears to be regulated by a recently discovered subunit, the Mgr2 protein. Deletion of Mgr2p has been found to delay protein translocation into the matrix and accumulation in the inner membrane. This result and other findings suggested that Mgr2p controls the lateral release of inner membrane proteins harboring a stop-transfer signal that follows an N-terminal amino acid signal. However, the mechanism of lateral release is unknown. Here, we used patch clamp electrophysiology …