Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biochemistry

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill Dec 2022

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill

SURE Journal: Science Undergraduate Research Experience Journal

Mitochondria are cytoplasmic, double-membrane organelles that synthesise adenosine triphosphate (ATP). Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is maternally inherited from the oocyte. Mitochondrial proteins are encoded by either nuclear DNA (nDNA) or mtDNA, and both code for proteins forming the mitochondrial oxidative phosphorylation (OXPHOS) complexes of the respiratory chain. These complexes form a chain that allows the passage of electrons down the electron transport chain (ETC) through a proton motive force, creating ATP from adenosine diphosphate (ADP). This study aims to explore current and prospective therapies for mitochondrial disorders (MTDS). MTDS are clinical syndromes coupled with abnormalities …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Student-Faculty Collaborative Research Grant Report, Megan Bestwick Feb 2019

Student-Faculty Collaborative Research Grant Report, Megan Bestwick

Post-Grant Reports

Mitochondria are essential organelles in most eukaryotic cells because of their role in metabolism and the production of ATP by the oxidative phosphorylation (OXPHOS) pathway, as well as other key cellular processes. Metal cofactors, such as copper (Cu) and iron (Fe), are incorporated into OXPHOS protein complexes of yeast located within the inner membrane of the mitochondria. Misincorporation or modulation of these available metals in mitochondrial enzymes leads to the production of reactive oxygen species (ROS). ROS are reactive molecules containing oxygen such as peroxides, superoxide, and hydroxyl radicals. Yeast are a good model for studying aging and the effect …


Modulation Of Electron Transport By Metformin In Cardiac Protection: Role Of Complex I, Ahmed Abdul Hussein Mohsin Jan 2018

Modulation Of Electron Transport By Metformin In Cardiac Protection: Role Of Complex I, Ahmed Abdul Hussein Mohsin

Theses and Dissertations

Modulation of mitochondrial complex I during reperfusion reduces cardiac injury. Complex I exists in two structural states: active (A) and deactive (D) with transition from A→D during ischemia. Reperfusion reactivates D→A with an increase in ROS production. Metformin preserves the D-Form. Our aim was to study the contribution of maintenance of deactivation of complex I during early reperfusion by metformin to protect against ischemia reperfusion injury. Our results showed that metformin decreased H9c2 cardiomyoblast apoptosis and total cell death following simulated ischemia for six hours followed by reoxygenation for twenty four hours compared to untreated cells. Reactive oxygen species (ROS) …


Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius Apr 2017

Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius

David M. Ojcius

Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the …


Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius Dec 2010

Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius

All Dugoni School of Dentistry Faculty Articles

Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the …


Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons Jan 2010

Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons

University of Kentucky Doctoral Dissertations

The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment.

The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass …


Substrate And Regulation Of Mitochondrial Μ-Calpain, Aashish Joshi Jan 2009

Substrate And Regulation Of Mitochondrial Μ-Calpain, Aashish Joshi

University of Kentucky Doctoral Dissertations

μ -Calpain is localized to the mitochondrial intermembrane space. Apoptosisinducing factor (AIF), which executes caspase-independent cell death, is also localized to the mitochondrial intermembrane space. Following processing at the N-terminus, AIF becomes truncated (tAIF) and is released from mitochondria. The protease responsible for AIF processing has not been established. The same submitochondrial localization of mitochondrial μ-calpain and AIF gives support to the hypothesis that mitochondrial μ-calpain may be responsible for processing AIF. Atractyloside-induced tAIF release in rat liver mitochondria was inhibited by cysteine protease inhibitor MDL28170, but not by calpain inhibitors PD150606 or calpastatin. Moreover, μ-calpain immunoreactivity was difficult to …


The Effects Of Luteinizing Hormone And Adenosine 3',5'-Cyclic Monophosphate On Phospholipid Metabolism By Luteal Mitochondria, Jim John Sadighian Apr 1986

The Effects Of Luteinizing Hormone And Adenosine 3',5'-Cyclic Monophosphate On Phospholipid Metabolism By Luteal Mitochondria, Jim John Sadighian

Chemistry & Biochemistry Theses & Dissertations

Luteinizing hormone (LH) increases intracellular concentrations of adenosine 3', 5 '-cyclic monophosphate and the phosphoinositides, phosphatidylinositol (PI), PI 4'-phosphate (PIP) and PI 4' .5 1 - bispbosphate (PIP2). It is believed that cAMP and the phosphoinositides act concertedly to regulate mitochondrial conversion of cholesterol to pregnenolone. This study examined the effects of LH and N6 ,O2 -dibutyryl cAMP (dbcAMP) on phospholipids metabolism by luteal mitochondria and the influence of dbcAMP and the phosphoinosi tides on mitochondrial steroid production. Mitochondria were isolated from unincubated and incubated luteal tissue by differential centrifugation. Phospholipids were extracted from the mitochondria …