Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 135

Full-Text Articles in Biochemistry

Kinase-Catalyzed Labeling To Identify Kinase-Substrate Pairs Using Γ-Phosphate Modified Atp Analogs, Rachel Beltman Jan 2022

Kinase-Catalyzed Labeling To Identify Kinase-Substrate Pairs Using Γ-Phosphate Modified Atp Analogs, Rachel Beltman

Wayne State University Dissertations

Post-translational modifications (PTMs) are responsible for a variety of cellular processes. One such PTM is protein phosphorylation, which is catalyzed by kinases. Kinase enzymes play important roles in cellular signaling pathways, but dysregulation of kinase-mediated events results in the formation of diseases, which make kinases favorable drug targets. To uncover the role kinases play in the development of diseases, kinase-mediated cellular events need to be better understood. The current gap in the field is the lack of tools available to identify the kinase that is responsible for specific phosphorylation events within the cell. To improve the gap in the field, …


Substrate Profiling Of The Epigenetic Erasers Hdac1 And Lsd1, Herath Mudiyansela Gedara Kavinda Eranga Herath Jan 2021

Substrate Profiling Of The Epigenetic Erasers Hdac1 And Lsd1, Herath Mudiyansela Gedara Kavinda Eranga Herath

Wayne State University Dissertations

Regulators of chromatin structure have emerged as a key driver of transcriptional responses inside the cell. Two such groups of regulators, histone writers and erasers; the proteins, that add or remove histone post translational modifications (PTMs), have become the central players in chromatin structure. Thus, the aberrant expression of writers and erasures is a hallmark in human diseases. For example, overexpression of the erasures histone deacetylase1 (HDAC1) and lysine specific demethylase1 (LSD1) had been reported in many cancers. Currently, HDAC inhibitors have been used successfully for cancer treatment and several inhibitors targeting LSD1 are in clinical trial. To date, apart …


Functional Characterization Of Threonine 49 Phosphorylation Of Cytochrome C, Antoine Khobeir Jan 2021

Functional Characterization Of Threonine 49 Phosphorylation Of Cytochrome C, Antoine Khobeir

Wayne State University Theses

Cytochrome c (Cytc) is a pivotal multifunctional mitochondrial protein that serves as a single electron carrier between complexes III and IV of the electron transport chain. It has important roles in both cellular respiration and apoptosis. The novel Thr49 (T49) phosphorylation of Cytc likely affects mitochondrial respiration, membrane potential, ROS production, ATP production, and apoptosis. Based on the functional characterization of previously mapped phosphorylation sites (Tyr97, Tyr48, Thr28, Ser47, Thr58) of the lab, we hypothesize that T49 phosphorylation will lead to controlled respiration, optimal intermediate mitochondrial membrane potential, lower ROS production, and inhibition of apoptosis compared to unphosphorylated Cytc. Here …


Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck Jan 2021

Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck

Wayne State University Dissertations

Mitochondria are complex organelles that generate most of the energy required to sustain life and function in metabolic and signaling pathways required to maintain cellular homeostasis. MNRR1 (mitochondrial nuclear retrograde regulator 1 or CHCHD2) is a small, bi-organellar twin CX9C protein that is emerging as an important regulator of mitochondrial function, apoptosis, and cellular stress by participating in mitochondrial-nuclear crosstalk. Our lab has previously shown that in the mitochondria, MNRR1 regulates complex IV (Cytochrome c oxidase or COX) and is able to finetune the oxidase function through phosphorylation status. We have also shown that during stress, mitochondrial MNRR1 levels deplete, …


Generation Of Neural Stem Cells (Nscs) From Human Fibroblasts Using Qq-Modified Sox2 And Neurod1 Proteins, Abdullah Ibrahim Alhomoudi Jan 2020

Generation Of Neural Stem Cells (Nscs) From Human Fibroblasts Using Qq-Modified Sox2 And Neurod1 Proteins, Abdullah Ibrahim Alhomoudi

Wayne State University Theses

The generation of induced neural stem cells (iNSCs) and induced neuronal cells (iNCs) from somatic cells provides new avenues for basic research and potential transplantation therapies for neurological diseases. However, clinical applications must consider the tumor formation capabilities of the implanted cells, the inability of iNCs to self-renew in culture, and reprogramming methods that use retroviral transduction which permanently alter genetic network of the cells. Here we report the generation of protein-induced neural stem cells (piNSCs) from human dermal fibroblasts using QQ-SON pluripotent reprogramming as a tool to quickly reset the time clock of the human somatic fibroblasts to a …


Timing And Duration Of Folate Restriction Differentially Impacts Colon Carcinogenesis., Ali M. Fardous Jan 2020

Timing And Duration Of Folate Restriction Differentially Impacts Colon Carcinogenesis., Ali M. Fardous

Wayne State University Dissertations

Colorectal cancer (CRC) constitutes a major burden on the healthcare system as the second most commonly diagnosed cancer in the developed world. Dietary folate is considered an important modulator of colorectal cancer. Folate restriction has been implicated in increasing CRC incidence by disrupting nucleotide synthesis, Impacting DNA methylation and inducing genetic instability. Our research shows that the timing and duration of dietary folate restriction can differentially impact Colorectal cancer initiation. Acclimating mice to folate restriction for 8 weeks results in a reduced number of preneoplastic lesions compared to mice placed of folate restriction for 1 week prior to initiating the …


Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday Jan 2020

Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday

Wayne State University Dissertations

Oxidative stress and endothelial dysfunction are reported in the cardiovascular and neurovascular diseases. Oxidative stress is caused due to an increase in the generation of reactive oxygen (ROS) and nitrogen species (RNS) and incapacity of antioxidant systems to eliminate ROS and RNS. Endothelial dysfunction is characterized by a reduction in nitric oxide (NO) bioavailability. NO is constitutively produced by enzyme endothelial nitric oxide synthase (eNOS). A reduction in tetrahydrobiopterin (BH4), which is an essential cofactor of eNOS, can lead to eNOS uncoupling. There is complex interplay between the ROS/RNS and antioxidant system underlying pathophysiologies of vascular diseases, however our quantitative …


Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia Jan 2020

Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia

Wayne State University Dissertations

Rat1 is a 5′→3′ exoribonuclease in budding yeast belonging to the XRN-family of nucleases. It is a highly conserved protein with homologs being present in fission yeast, flies, worms, mice and humans. Rat1 and its homolog in metazoan have been shown to function in multiple facets of RNA metabolism. In this study, we report a novel role of Rat1 in splicing of pre-mRNA in budding yeast. In the absence of the functional Rat1 in the nucleus, an increase in the level of unspliced transcripts was observed in yeast cells. Strand-specific TRO analysis revealed that the accumulation of unspliced transcripts upon …


Development And Application Of Chemical Tools To Identify Kinase-Substrate Interactions, Aparni Kithulgoda Gamage Jan 2020

Development And Application Of Chemical Tools To Identify Kinase-Substrate Interactions, Aparni Kithulgoda Gamage

Wayne State University Dissertations

Post translational modifications regulate a variety of biological processes inside the cell.Protein phosphorylation is one such PTM modification catalyzed by protein kinases, which aid to transfer a signal from one place to another inside the cell. However, irregularities in kinase-mediated signaling are often implicated in many diseases, making kinases effective drug targets. To understand kinase-related disease formation and to discover drugs to treat these diseases, it is crucial to have a clear understanding on kinase-mediated cell signaling networks. A current gap in the kinase biology field is a lack of tools to identify which kinase phosphorylates which protein substrate inside …


Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco Jan 2020

Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco

Wayne State University Dissertations

Ubiquitin is an 8.5 kDa post-translational modifier involved in essentially all eukaryotic cellular processes. Through a process called ubiquitination, ubiquitinating enzymes chemically attach ubiquitin to substrate proteins to control their fates, resulting in anything from their recruitment into signaling pathways to their proteasomal degradation, with a plethora of possibilities in between. Ubiquitin molecules can also be attached to one another, resulting in poly-ubiquitin chains with various effects depending on the number of ubiquitin molecules and the specific amino acid residues used to link them together. While most poly-ubiquitin in the cell exists as conjugated species, there are also untethered poly-ubiquitin …


Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage Jan 2019

Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage

Wayne State University Dissertations

With the discovery of cisplatin in the 1960s, it has been widely studied as a precursor for anticancer drug development. Despite its effectiveness against certain cancers, clinical usage of cisplatin is restricted by a number of side effects and resistance. In the past decade, scientists have been exploring biologically important ligands such as sugar derivatives in the hope of overcoming such challenges. Attachment of a sugar moiety could facilitate lower accumulation of platinum drugs in the body as well as enhance cellular uptake. In this study, a carbohydrate-linked cisplatin analog, cis-dichlorido[(2-β-D-glucopyranosidyl)propane-1,3-diammine]platinum (5) has been studied. The aim was to evaluate …


Trna Aminoacylation: New Protein Players And New Reactions, Whitney Noel Wood Jan 2019

Trna Aminoacylation: New Protein Players And New Reactions, Whitney Noel Wood

Wayne State University Dissertations

TRNA AMINOACYLATION: NEW PROTEIN PLAYERS AND NEW REACTIONS

by

WHITNEY N. WOOD

May 2019

Advisor: Dr. Tamara L. Hendrickson

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

Protein translation must usually occur with high accuracy for an organism to survive. However, Helicobacter pylori, Staphylococcus aureus, and many other microorganisms including important human pathogens, lack one or more aminoacyl-tRNA synthetase (aaRS), the enzymes that typically aminoacylate tRNAs for ribosomal translation. These organisms must use an indirect pathway to aminoacylate some tRNAs. Specifically, H. pylori lacks the genes that encode for asparaginyl- and glutaminyl-tRNA synthetases (AsnRS and GlnRS, respectively). Instead, H. pylori uses …


Biochemical, Structural, And Drug Design Studies Of Aspartate Transcarbamoylase From Pseudomonas Aeruginosa And Staphylococcus Aureus, Chandni Patel Jan 2019

Biochemical, Structural, And Drug Design Studies Of Aspartate Transcarbamoylase From Pseudomonas Aeruginosa And Staphylococcus Aureus, Chandni Patel

Wayne State University Dissertations

Sepsis affects 1.7 million people in the United States every year and nearly 270,000 people die as a result. Sepsis is characterized by systemic inflammation from an infection leading to organ dysfunction and death. Multi-drug resistance in bacteria is increasing globally, and Pseudomonas aeruginosa and Staphylococcus aureus are notorious for their multi-drug resistance and pose a serious need for the development of new antibiotics. The levels of pyrimidines in blood are too low to sustain the growth of bacteria, so they must rely on pyrimidine biosynthesis. Previous studies have shown that a defect in several pyrimidine biosynthetic enzymes resulted in …


Predicting The Structure And Selectivity Of Coiled-Coil Proteins, Mojtaba Jokar Jan 2019

Predicting The Structure And Selectivity Of Coiled-Coil Proteins, Mojtaba Jokar

Wayne State University Dissertations

A coiled-coil protein structure consists of two (in coiled-coil dimers) or more interacting α-helical strands that together form a left-handed supercoil structure. Many coiled-coil proteins are involved in significant biological functions such as the regulation of gene expression, known as transcription factors. Also coiled-coil structures entail unique mechanical properties critical to the function and integrity of various motor proteins, cytoskeletal filaments and extra-cellular matrix proteins. Engineering these transcription factors is also expected to create more efficient and practical solutions to treat neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and prion …


The Dynamic Nature And Biophysical Characterization Of Isu1, Fe-S Cluster Assembly Scaffold Protein In Saccharomyces Cerevisiae, And Its Significance To Human Disease, Brianne Elizabeth Lewis Jan 2019

The Dynamic Nature And Biophysical Characterization Of Isu1, Fe-S Cluster Assembly Scaffold Protein In Saccharomyces Cerevisiae, And Its Significance To Human Disease, Brianne Elizabeth Lewis

Wayne State University Dissertations

Mitochondrial Fe-S cluster biosynthesis is accomplished within yeast utilizing the biophysical characteristics of the “Isu1” scaffold protein. As a member of a highly homologous protein family, Isu1 has sequence conservation with orthologs and a conserved ability to assemble [2Fe-2S] clusters. Regardless of species, scaffold orthologs can exist in both “disordered” and “structured” conformations and is directly related to conformations utilized during Fe-cofactor assembly. During assembly, the scaffold directs the delivery and the utilization of both Fe(II) and sulfide substrates in order to produce [2Fe-2S] clusters, however Zn(II) binding can alter the activity of the scaffold with stabilizing the protein in …


Role Of Dyslipidemia On Lipid Metabolism In Maintenance Hemodialysis Patients, Eno Latifi Jan 2019

Role Of Dyslipidemia On Lipid Metabolism In Maintenance Hemodialysis Patients, Eno Latifi

Wayne State University Dissertations

Maintenance hemodialysis (MHD) patients experience various abnormalities such as systemic inflammation (SI), oxidative stress (OS), and dyslipidemia (D). Defined as an imbalance of plasma lipids, lipoproteins, and lipid metabolism enzymes, D has been associated with a rise in morbidity and mortality within ESRD patients due to cardiovascular disease (CVD). However, the contribution of each of these parameters to D is poorly understood; moreover, the impact of the following parameters on dyslipidemia in different ethnicities is unknown. Hence, the objective of this study was to characterize D in a multi-ethnic cohort of ESRD patients. We hypothesized that the degree of dyslipidemia …


Functional Analysis Of Bacillus Anthracis Aspartate Transcarbamoylase And Dihydroorotase, Katelyn Leigh Schwager Silva Jan 2019

Functional Analysis Of Bacillus Anthracis Aspartate Transcarbamoylase And Dihydroorotase, Katelyn Leigh Schwager Silva

Wayne State University Theses

There are many enzymes required for efficient and proper pyrimidine biosynthesis. The two that are most important and were discussed in this thesis are aspartate transcarbamoylase (ATCase) and dihydroorotase (DHOase). Both play an important role in not only pyrimidine biosynthesis production, but also mechanistic regulation of de novo synthesis. Anthrax is an infection caused by Bacillus anthracis. Here we studied ATCase and DHOase in Bacillus Anthracis. In this thesis we understood the effects of the enzymes ATCase and DHOase on pyrimidine biosynthesis. Adequate inhibitors of these enzymes would result in cell death and could pose as a cure to infection …


Effect Of Oil Palm Phenolics (Opp) On Pancreatic Cancer Cell Lines, Inaam Abdul Karim Jan 2019

Effect Of Oil Palm Phenolics (Opp) On Pancreatic Cancer Cell Lines, Inaam Abdul Karim

Wayne State University Theses

Pancreatic cancer (paca) is currently the fifth causes of cancer-related deaths in the United States. It’s an aggressive form of cancer with very low survival rates because of delayed diagnosis and limited treatment options. Gemcitabine is the chemotherapy drug that provides minimal benefits along with many side effects. The aim of this study was to examine the in vitro effects of oil palm phenolics (OPP) fraction-5, the water-soluble component of palm oil, in human pancreatic cancer cell models. Two pancreatic cancer cell lines (Panc-1 and BxPC-3) were categorized into control and treatment groups. The control group received cell culture media …


Perturbation Of Energy Metabolism At The Center Of The Mechanism Of Action Of Valproate, Michael Ghassan Salsaa Jan 2019

Perturbation Of Energy Metabolism At The Center Of The Mechanism Of Action Of Valproate, Michael Ghassan Salsaa

Wayne State University Dissertations

Bipolar disorder (BD) is a common and debilitating psychiatric disorder. Valproic acid (VPA) is one of the major drugs used to treat BD patients. However, it is not universally effective and, in addition, causes severe side effects. Its mechanism of action is not known, which complicates efforts to develop more effective drugs. Studies have established that VPA perturbs metabolism, which is implicated in both the therapeutic mechanism of action of the drug as well as drug toxicity. However, the mechanism whereby VPA causes these perturbations is not understood. To address this knowledge gap, I investigated the acute and chronic effects …


Functional Characterization Of Accessory Proteins And Novel Activities In Direct And Indirect Trna Aminoacylation, Udumbara Menike Rathnayake Jan 2019

Functional Characterization Of Accessory Proteins And Novel Activities In Direct And Indirect Trna Aminoacylation, Udumbara Menike Rathnayake

Wayne State University Dissertations

Indirect tRNA aminoacylation is essential for most bacteria and archaea, particularly when these species do not have genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase (AsnRS and GlnRS). In the absence of AsnRS, the first step in Asn-tRNAAsn synthesis involves misacylation of tRNAAsn with aspartate to produce Asp-tRNAAsn; this reaction is catalyzed by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS). Subsequently, in bacteria, an amidotransferase called GatCAB converts Asp-tRNAAsn to Asn-tRNAAsn. An analogous, two-step processes exist to produce Gln-tRNAGln. In this case, a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) misacylates tRNAGln to produce Glu-tRNAGln, which is then converted to Gln-tRNAGln by GatCAB. The central hub of …


Investigation Of The In Vivo Activity Of Ribosome-Targeting Peptides And Aminoglycosides In Escherichia Coli, Nisansala Sarangi Thilakarathne Muthunayake Jan 2018

Investigation Of The In Vivo Activity Of Ribosome-Targeting Peptides And Aminoglycosides In Escherichia Coli, Nisansala Sarangi Thilakarathne Muthunayake

Wayne State University Dissertations

The development of short peptides that specifically bind to higher-order structures of ribosomal RNA is one promising way to address the problem of antibiotic resistance. However, the poor correlation between in vitro and in vivo activities of these peptides is one of the major questions in antibiotic peptide research. Therefore, one of the main objectives of this dissertation work was to utilize a plasmid-based system to in vivo express ribosome-targeting peptides and study their direct inhibitory effects on bacteria. A specific plasmid system was optimized to in vivo express oncocin, a prolin-rich antimicrobial peptide and its variants in bacteria. Our …


Functional Study Of Smyd2 Glutathionylation In Cardiomyocytes, Dhanushka Nalin Perera Munkanatta Godage Jan 2018

Functional Study Of Smyd2 Glutathionylation In Cardiomyocytes, Dhanushka Nalin Perera Munkanatta Godage

Wayne State University Dissertations

Reactive oxygen species (ROS) are important signaling molecules that contribute to the etiology of multiple muscle-related diseases, including cardiomyopathy and heart failure. There is emerging evidence that cellular stress can lead to destabilization of sarcomeres, the contractile unit of muscle. However, it is not completely understood how cellular stress or ROS induce structural destabilization of sarcomeres or myofibrils. Protein glutathionylation is one of the major protein cysteine oxidative modifications that play an important role in redox signaling and oxidative stress. In this report, we used a clickable glutathione approach in a cardiomyocyte cell line, and found that SET and MYND …


Biochemical And Cellular Studies Of Apobec3 Family Dna-Cytosine Deaminases, Sachini Umedi Siriwardena Jan 2018

Biochemical And Cellular Studies Of Apobec3 Family Dna-Cytosine Deaminases, Sachini Umedi Siriwardena

Wayne State University Dissertations

The AID/APOBEC family of enzymes deaminate cytosines in single-stranded DNA to uracils leading to base substitutions and strand breaks. Members of APOBEC3 family in humans are induced by cytokines produced during the body's inflammatory response to infections and provide innate immunity against viruses. However, there is emerging consensus that these enzymes can cause mutations in the cellular genome depending on the physiological state of the cell and the phase of the cell cycle they are expressed. Since aberrant expression of APOBEC3B was recently identified as a possible source of cancer, we initiated a study to determine the maximally active catalytic …


Alternative Strategies To Inhibit Lysine Methyltransferases And Deubiquitinases In Human Cancers, Nicholas Spellmon Jan 2018

Alternative Strategies To Inhibit Lysine Methyltransferases And Deubiquitinases In Human Cancers, Nicholas Spellmon

Wayne State University Dissertations

X-ray crystallography is the gold standard method for imagining macromolecules to atomic resolution. Three dimensional data is central to understanding the molecular mechanism how DNA, RNA and proteins function in biological events. Structural insights into these events provide a molecular window to visualize how biological molecules influence human health. Visualizing the architecture of these molecules set the stage for rational and selective drug design. The following dissertation utilizes biochemical and biophysical tools, including X-ray crystallography, to shed light on poorly understood mechanisms related to SMYD2 activity and regulation, USP10 architecture and function, and PDZ-RhoGEF dimerization. SMYD2 is one member of …


Investigation Of The Saccharomyces Cerevisiae Gpi Transamidase: Insights Into Its Activity And Subunit-Subunit Interactions, Travis Ness Jan 2018

Investigation Of The Saccharomyces Cerevisiae Gpi Transamidase: Insights Into Its Activity And Subunit-Subunit Interactions, Travis Ness

Wayne State University Dissertations

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a eukaryotic, posttranslational

modification catalyzed by GPI transamidase (GPI-T). The Saccharomyces

cerevisiae GPI-T is composed of five membrane-bound subunits: Gaa1, Gpi8, Gpi16,

Gpi17, and Gab1. Structural and functional studies have been hindered by the

complexity of this enzyme. Conditions to purify the Gpi8:Gaa1:Gpi16 GPI-T heterotrimer

from yeast have been reported, but an understanding of the subunit functions,

interactions, and stoichiometry remain unclear. Furthermore, a reliable, quantitative, in

vitro assay for this important post-translational modification has remained elusive for

nearly three decades.

Our laboratory has developed an in vitro peptide cleavage assay that correlates

changes …


Carbohydrate-Based Inducers Of Cellular Stress For Targeting Cancer Cell Metabolism, Fidelis Ndombera Jan 2018

Carbohydrate-Based Inducers Of Cellular Stress For Targeting Cancer Cell Metabolism, Fidelis Ndombera

Wayne State University Dissertations

ABSTRACT

CARBOHYDRATE-BASED INDUCERS OF CELLULAR STRESS FOR TARGETING CANCER CELL METABOLISM

by

FIDELIS TOLOYI NDOMBERA

May 2018

Advisor: Dr. Young-Hoon Ahn

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

Metabolic reprogramming and redox control of cancer cells is vital for their proliferation, but also provides selective strategies for treating cancer. Increased generation of reactive oxygen species (ROS) and an intricate control of redox status in cancer cells relative to normal cells provide a basis for designing ROS-inducing anticancer agents. In my work, I designed, synthesized and evaluated carbohydrate-based small molecules for ROS-generation, cytotoxicity and redox signaling and stress response. Our data …


Design, Synthesis, And Reactivity Of Homo- And Heterobimetallic Complexes Bridged By A Xanthene Linker, Thilini Samangi Hollingsworth Jan 2018

Design, Synthesis, And Reactivity Of Homo- And Heterobimetallic Complexes Bridged By A Xanthene Linker, Thilini Samangi Hollingsworth

Wayne State University Dissertations

Cooperative reactivity of bimettalics can be is observed in many different areas of chemistry and have been increasingly investigated because of the advantageous reactivity when compared to the corresponding mononuclear systems. The focus of my dissertation is on (1) investigation of the homobimetallic cooperativity in lactide polymerization catalysis; (2) investigation of the heterobimetallic cooperativity in the biomimetic studies of Mo-Cu carbon monoxide dehydrogenase (CODH) enzyme in order to make a functional model of its active site.

Three new main group bis(alkoxide) complexes Mg(OR)2(THF)2, Zn(Cl)(μ2-OR)2Li(THF) and In(OR)2(μ2-Cl)2Li(THF)2 featuring bulky alkoxide [OCtBu2Ph] were synthesized serve as metal alkoxide precursors for bimetallic lactide …


Methionine Sulfoximine: A Novel Anti Inflammatory Agent, Tyler Peters Jan 2018

Methionine Sulfoximine: A Novel Anti Inflammatory Agent, Tyler Peters

Wayne State University Dissertations

ABSTRACT

METHIONINE SULFOXIMINE: A NOVEL ANTI-INFLAMMATORY AGENT

by

TYLER J. PETERS

October 2018

Advisor: William Brusilow

Major: Biochemistry and Molecular Biology

Degree: Doctor of Philosophy

The glutamine synthetase inhibitor methionine sulfoximine (MSO), shown previously to prevent death caused by an inflammatory liver response in mice, was tested on in vitro production of cytokines by mouse peritoneal macrophages triggered with lipopolysaccharide (LPS). MSO significantly reduced the production of Interleukin 6 (IL-6) and Tumor Necrosis Factor Alpha (TNFα) at 4 and 6 hours after LPS-treatment. This reduction did not result from decreased transcription of IL-6 and TNFα genes, and therefore appeared to …


Development Of Tools For Phosphosite-Specific Kinase Identification And Discovery Of Phosphatase Substrates, Pavithra Maheshani Dedigama Arachchige Jan 2017

Development Of Tools For Phosphosite-Specific Kinase Identification And Discovery Of Phosphatase Substrates, Pavithra Maheshani Dedigama Arachchige

Wayne State University Dissertations

Phosphorylation is a ubiquitous post translational modification implicated in many diseases, such as cancer. The phosphorylation status of cellular proteins is regulated by the activity of kinases and phosphatases. The biological significance of many phosphorylation events remain unknown because the methods to determine which kinase or phosphatase is responsible for phosphorylation are limited. Previously, we established kinase-catalyzed labeling where kinases accept γ-modified ATP analogs, such as ATP-arylazide and ATP-biotin, to label phosphoproteins. To study substrates of kinases and phosphatases, here we developed two new methods using kinase-catalyzed labeling. As one application, we developed K-CLASP (Kinase-catalyzed CrossLinking And Streptavdin Purification) to …


Differential Activation Of Dead Box Rna Helicases Rhlb And Rhle By Hfq/Srnas And Their Target Mrnas, Amit Kumar Jan 2017

Differential Activation Of Dead Box Rna Helicases Rhlb And Rhle By Hfq/Srnas And Their Target Mrnas, Amit Kumar

Wayne State University Theses

Number of small RNA (sRNA) gene regulators have mounted in E. coli over the years whereas the number of validated protein partners has not changed considerably. Hfq has remained the only well studied global regulatory partner of sRNAs in E. coli. However, direct or indirect involvement of other protein partners has always been speculated. Study from Blasi lab has shown that CsdA, one of the five DEAD-box RNA helicases of E. coli, is required for the DsrA mediated upregulation of rpoS under cold stress condition. Previous study from our lab has identified two other DEAD-box RNA helicases, RhlB and RhlE, …