Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Spliceosomal Prp24 Unwinds A Minimal U2/U6 Complex From Yeast, Chandani Manoja Warnasooriya Jan 2013

Spliceosomal Prp24 Unwinds A Minimal U2/U6 Complex From Yeast, Chandani Manoja Warnasooriya

Wayne State University Theses

Splicing plays a major role in eukaryotic gene expression by processing pre-mRNA to form mature mRNA. Pre-mRNAs undergo splicing to remove introns, non–protein coding regions, and religate exons, protein coding regions. This process is catalyzed by the spliceosome, which consists of five small nuclear ribonucleoprotein particles (snRNPs: U1, U2, U4, U5 and U6) and numerous protein factors. Proper assembly of spliceosomal components is critical for function, and thus, defects in assembly can be lethal. Several spliceosomal proteins facilitate structural rearrangements important for spliceosomal assembly and function. Prp24 is an essential factor in U6 snRNP assembly, and it has been proposed …


Study Of Protein-Rna Interactions Using Fluorescence Resonance Energy Transfer (Fret) And Single-Molecule Fret, Rajan Lamichhane Jan 2011

Study Of Protein-Rna Interactions Using Fluorescence Resonance Energy Transfer (Fret) And Single-Molecule Fret, Rajan Lamichhane

Wayne State University Dissertations

In the cell, RNA and protein, interact to form ribonucleoprotein complexes (RNPs) that have vital structural, catalytic and regulatory roles. Despite their functional importance, the mechanistic details and dynamics of RNPs are poorly understood. Single-molecule Fluorescence Resonance Energy Transfer (smFRET) techniques that provide information about heterogeneity and dynamic behaviors of molecules have been developed to investigate inter- and intra-molecular interactions. Here we have used FRET in combination with smFRET to study three very different RNP systems.

Alternative splicing is a highly regulated biological process that plays a crucial role in proteomic diversity in eukaryotes. One splicing regulator, PTB, has been …


Characterization Of Splicing Mechanisms By Single-Molecule Fluorescence, Krishanthi Sanjeewani Karunatilaka Jan 2011

Characterization Of Splicing Mechanisms By Single-Molecule Fluorescence, Krishanthi Sanjeewani Karunatilaka

Wayne State University Dissertations

Group II introns rank amongst the largest self-splicing ribozymes found in bacteria and organellar genomes of various eukaryotes. Despite the diversity in primary sequences, group II introns posses highly conserved secondary structures consisting of six domains (D1-D6). To perform its function, the large multidomain group II intron RNA must adopt the correctly folded structure. As a result, in vitro splicing of these introns requires high ionic strength and elevated temperatures. In vivo, this process is mainly assisted by protein cofactors. However, the exact mechanism of protein-mediated splicing of group II intron RNA is still not known.

In order to …