Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry

Functional Characterization Of Threonine 49 Phosphorylation Of Cytochrome C, Antoine Khobeir Jan 2021

Functional Characterization Of Threonine 49 Phosphorylation Of Cytochrome C, Antoine Khobeir

Wayne State University Theses

Cytochrome c (Cytc) is a pivotal multifunctional mitochondrial protein that serves as a single electron carrier between complexes III and IV of the electron transport chain. It has important roles in both cellular respiration and apoptosis. The novel Thr49 (T49) phosphorylation of Cytc likely affects mitochondrial respiration, membrane potential, ROS production, ATP production, and apoptosis. Based on the functional characterization of previously mapped phosphorylation sites (Tyr97, Tyr48, Thr28, Ser47, Thr58) of the lab, we hypothesize that T49 phosphorylation will lead to controlled respiration, optimal intermediate mitochondrial membrane potential, lower ROS production, and inhibition of apoptosis compared to unphosphorylated Cytc. Here …


Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck Jan 2021

Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck

Wayne State University Dissertations

Mitochondria are complex organelles that generate most of the energy required to sustain life and function in metabolic and signaling pathways required to maintain cellular homeostasis. MNRR1 (mitochondrial nuclear retrograde regulator 1 or CHCHD2) is a small, bi-organellar twin CX9C protein that is emerging as an important regulator of mitochondrial function, apoptosis, and cellular stress by participating in mitochondrial-nuclear crosstalk. Our lab has previously shown that in the mitochondria, MNRR1 regulates complex IV (Cytochrome c oxidase or COX) and is able to finetune the oxidase function through phosphorylation status. We have also shown that during stress, mitochondrial MNRR1 levels deplete, …


The Effect Of Acetylation Of Cytochrome C On Its Functions In Prostate Cancer, Viktoriia Bazylianska Jan 2017

The Effect Of Acetylation Of Cytochrome C On Its Functions In Prostate Cancer, Viktoriia Bazylianska

Wayne State University Theses

Prostate cancer is the second leading cause of cancer death among men in America. The progression of cancer goes along with the Warburg effect, a metabolic switch from depending primarily on mitochondrial respiration to glycolysis. In addition, cancer cells manage to evade apoptosis. Cell signaling, via posttranslational modifications (PTMs), is one of the most important means of regulation, and most commonly dysregulated in cancer. In prostate cancer, androgen signaling plays a crucial role in driving cell proliferation.

Mammalian Cytochrome c (Cytc) is a multifunctional protein involved in cellular life and death decision. It is an essential component of the electron …


Novel Regulatory Mechanisms Of Inositol Biosynthesis In Saccharomyces Cerevisiae And Mammalian Cells, And Implications For The Mechanism Underlying Vpa-Induced Glucose 6-Phosphate Depletion, Wenxi Yu Jan 2016

Novel Regulatory Mechanisms Of Inositol Biosynthesis In Saccharomyces Cerevisiae And Mammalian Cells, And Implications For The Mechanism Underlying Vpa-Induced Glucose 6-Phosphate Depletion, Wenxi Yu

Wayne State University Dissertations

Myo-inositol is the precursor of all inositol containing molecules, including inositol phosphates, phosphoinositides and glycosylphosphatidylinositols, which are signaling molecules involved in many critical cellular functions. Perturbation of inositol metabolism has been linked to neurological disorders. Although several widely-used anticonvulsants and mood-stabilizing drugs have been shown to exert inositol depletion effects, the mechanisms of action of the drugs and the role of inositol in these diseases are not understood. Elucidation of the molecular control of inositol synthesis will shed light on the pathologies of inositol related illnesses.

In Saccharomyces cerevisiae, deletion of the four glycogen synthase kinase-3 genes, MCK1, MRK1, MDS1, …


Investigation Of Bacterial Rna-Directed Dna Methylation Via Dcm And Hfq, Dandan Li Jan 2013

Investigation Of Bacterial Rna-Directed Dna Methylation Via Dcm And Hfq, Dandan Li

Wayne State University Theses

Bacterial small RNAs and the RNA chaperone Hfq play crucial roles in post-transcriptional gene regulation, often as parts of stress-response pathways, but little is known about their roles in regulation of gene transcription. A recent report showed that changes in methylation patterns caused by DNA cytosine methyltransferase (Dcm) were linked to gene regulation occurring during the transition to stationary phase. Here, we show that Dcm involves in the stress responses under nutrient starvation and cold stress. Dcm and Hfq together mediate gene expression under cold stress. Hfq promotes Dcm-catalyzed cytosine methylation at specific sites near the rpoS promoter, which is …


The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil Jan 2013

The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil

Wayne State University Dissertations

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. The importance of CL in human health is underscored by the observation that perturbation of CL …