Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Cell Biology

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 265

Full-Text Articles in Biochemistry

Assessing Lipid Composition Of Cell Membrane In Escherichia Coli Under Aerobic And Anaerobic Conditions, Isabelle Johnson Jan 2024

Assessing Lipid Composition Of Cell Membrane In Escherichia Coli Under Aerobic And Anaerobic Conditions, Isabelle Johnson

Undergraduate Theses, Professional Papers, and Capstone Artifacts

Escherichia coli is a highly studied model organism that is tightly tied to the mammalian gastrointestinal system. This microorganism has the capability to be a beneficial gut microbe or a life-threatening pathogen. In this study, the lipid membrane of Escherichia coli was investigated using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) to observe the change in its composition in aerobic and anaerobic conditions. Evidence of desaturation was discovered in the spectra, though more investigation is needed to understand the metabolic processes and drives that result in this change. Elucidation of these pathways in the future could result in …


Characterization Of The Effects Of The Pyrazolopyrimidine Inhibitor Grassofermata (Nav-2729) In The Eukaryotic Pathogen Trypanosoma Brucei, Kristina Marie Parman Dec 2023

Characterization Of The Effects Of The Pyrazolopyrimidine Inhibitor Grassofermata (Nav-2729) In The Eukaryotic Pathogen Trypanosoma Brucei, Kristina Marie Parman

All Dissertations

The protozoan pathogen, Trypanosoma brucei, is the causative agent of sleeping sickness in humans and nagana in livestock in sub-Saharan Africa. T. brucei cycles between tsetse fly and mammalian hosts, and it is adapted to survive in diverse host tissues. Variant Surface Glycoprotein (VSG) plays a key role in immune evasion in the mammalian host. The VSG membrane anchor requires two myristates, 14-carbon saturated fatty acids (FAs) that are scarce in the host. T. brucei can synthesize FAs de novo, but also readily takes up exogenous FAs, despite lacking homologs to fatty acid uptake proteins found in other …


Amyloid Fibrils Of Human Fgf-1 Induced By Different Detergents, Zeina Ismael Ibrahem Alraawi Dec 2023

Amyloid Fibrils Of Human Fgf-1 Induced By Different Detergents, Zeina Ismael Ibrahem Alraawi

Graduate Theses and Dissertations

Nature achieves molecular self-assembly through the ordered growth of nanoscale building blocks with high efficiency to fabricate macromolecular architectures. One example of self- assembly is peptides folding onto protein is one of the most astounding biological self-assembly processes. When proteins aggregate to form amyloid fibers, the secondary structure of the protein converts from its native state to a cross-beta-sheet. Fibroblast growth factors (FGFs) possess an essential role in neuronal survival during development. In addition, they are involved in neural stem cell (NSC) proliferation. Fibroblast growth factors (FGFs) are well known to be synthesized in the central nervous system (CNS) and …


Characterization Of Human Fibroblast Growth Factor 2 Variant To Determine Effects On Structure, Stability, And Cell Proliferation, Ryan Layes Dec 2023

Characterization Of Human Fibroblast Growth Factor 2 Variant To Determine Effects On Structure, Stability, And Cell Proliferation, Ryan Layes

Graduate Theses and Dissertations

Fibroblast growth factors (FGFs) are a family of cell signaling proteins conserved across multiple species. Each individual FGF elicits different cellular functions including, but not limited to, proliferation, migration, differentiation, angiogenesis, and wound healing. One of the most studied members, fibroblast growth factor 2 (FGF2), has demonstrated substantial wound healing capacity in a wide range of tissues including skeletal, muscular, neural, respiratory, epithelial, and cardiovascular. This ability makes FGF2 a potential therapeutic for a wide range of conditions and injuries. However, due to a short half-life at room temperature, therapeutic use of FGF2 is limited. It has been demonstrated that …


Caulobacter Clpxp Adaptor Popa’S Domain Interactions In The Adaptor Hierarchy Of Ctra Degradation, Thomas P. Scudder Nov 2023

Caulobacter Clpxp Adaptor Popa’S Domain Interactions In The Adaptor Hierarchy Of Ctra Degradation, Thomas P. Scudder

Masters Theses

The degradation and recycling of protein is a process essential for the maintenance and regulation of cellular function. More specifically, in Caulobacter crescentus, the ClpXP protease is responsible for driving progression through the cell cycle and protein quality control. This protease utilizes three known adaptors to selectively degrade proteins that initiate different stages of development. This thesis will elaborate on the specific binding interface on one of these adaptors, PopA, with another, RcdA, and focus in on specific residues on PopA and investigate their roles in adaptor binding and delivery of CtrA, the master regulator of Caulobacter. Finally, I …


Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut Oct 2023

Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut

Chemistry & Biochemistry Theses & Dissertations

Cancer continues to be the leading global cause of death, with challenges in early diagnosis, drug resistance, non-specific drug targeting, and cancer recurrence and metastasis posing formidable obstacles in cancer therapy. In this context, Prostate Apoptosis Response-4 (Par-4), a pro-apoptotic tumor suppressor protein, emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells, thereby minimizing the drug-associated adverse effects. However, a comprehensive understanding of the structural features of Par-4, specifically the caspase-cleaved fragment (cl-Par-4), is crucial for therapeutic advancements.

This dissertation investigated the effects of various ions, both monovalent and divalent, on the …


Elucidating The Biomechanics Of Mertk-Mediated Efferocytosis, Brandon Hayato Dickson Jul 2023

Elucidating The Biomechanics Of Mertk-Mediated Efferocytosis, Brandon Hayato Dickson

Electronic Thesis and Dissertation Repository

Macrophages are key mediators of efferocytosis – the phagocytic engulfment and removal of apoptotic cells. During engulfment, the coordinated activity of efferocytic receptors induces the remodeling of the actin cytoskeleton, which facilitates the envelopment of the cell by the plasma membrane. Mer receptor tyrosine kinase (MERTK) is a crucial efferocytic receptor, but its role during actin remodeling is not well understood. Previously, our lab showed that MERTK is an activator of β2 integrins – which are comprised of receptors known to induce the actin polymerization that is required for engulfment. We hypothesized that MERTK is an indirect stimulator of …


Proteomic Approaches To Identify Unique And Shared Substrates Among Kinase Family Members, Charles Lincoln Howarth Jul 2023

Proteomic Approaches To Identify Unique And Shared Substrates Among Kinase Family Members, Charles Lincoln Howarth

Dartmouth College Ph.D Dissertations

Protein phosphorylation is a reversible post-translational modification that is a critical component of almost all signaling pathways. Kinases regulate substrate proteins through phosphorylation, and nearly all proteins are phosphorylated to some extent. Crucially, breakdown in phosphorylation signaling is an underlying factor in many diseases, including cancer. Understanding how phosphorylation signaling mediates cellular pathways is crucial for understanding cell biology and human disease.

Targeted protein degradation (TPD) is a strategy to rapidly deplete a protein of interest (POI) and is applicable to any gene that is amenable to CRISPR-Cas9 editing. One TPD approach is the auxin-inducible degron (AID) system, which relies …


Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono May 2023

Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono

Seton Hall University Dissertations and Theses (ETDs)

Osteoblast-targeting peptides in the treatment of bone disease is a new and novel approach to offering effective treatment of various cancers and can be used in bio-medical, medicinal chemistry and biotechnology applications. By targeting adhesion proteins produced by osteoblast cells, certain cancers which migrate and metastasize to the bone may be more effectively treated. An osteoblast-targeting peptide composed of Ser-Asp-Ser-Ser-Asp (SDSSD) which selectively binds to osteoblast cells via periostin has recently been identified. This peptide was functionalized with polyurethane, generating nanomicelles which encapsulated RNA for the therapeutic treatment of osteoporosis. This study has served as the basis for the research …


Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie May 2023

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie

Dissertations and Theses

Offspring of diabetic and obese mothers (ODOM) have greater risks of heart disease at birth and later in life. However, prevention is hindered because underlying mechanisms are poorly understood. Mounting studies in the Developmental Origins of Health and Disease field suggest that mitochondria play key roles in developmentally programmed heart disease similar to the roles they play in cardiomyopathy in adults with diabetes and obesity. However, whether mitochondria are responsible for the short[1]and long-term cardiac disease seen in ODOM remains unknown. Here, we sought to delineate the roles of mitochondria in the hearts of ODOM, determine whether mitochondria are playing …


Review Of Biomedical Applications Of Cardiovascular Tissue Engineering, Natalie M. Howard May 2023

Review Of Biomedical Applications Of Cardiovascular Tissue Engineering, Natalie M. Howard

Honors College Theses

Tissue engineering can be defined as processes that aim to generate three-dimensional functional tissues in vitrothat have been favorably altered according to the structural, biochemical, electrophysiological, and biomechanical properties of the desired tissue before implantation into the human body. In relation to cardiac tissues, these properties would include the ability to conduct action potentials, withstand systolic pressure, permit sufficient O2 and CO2penetration, sufficient vascularization to supply nutrients for cellular activity, surface topology that enables cellular communication, and more. As heart diseases and instances of myocardial infarction continue to rise worldwide, there is an increasing need for …


Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight May 2023

Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight

All Dissertations

Trypanosoma brucei is a kinetoplastid parasite responsible for human African trypanosomiasis (HAT) and nagana, a livestock wasting disease, which both endemic to sub-Saharan Africa. Unique to kinetoplastids are the specialized peroxisomes, named glycosomes, which compartmentalize the first several steps of glycolysis and gluconeogenesis, nucleotide sugar biosynthesis, and many other metabolic processes. Kinetoplastids are unique in that they have a single mitochondrion. In this work, I present the first study into SET domain proteins in any kinetoplastid parasites. We have characterized a predicted SET domain protein, TbSETD3, that localizes to the mitochondrion and a depletion of the protein results in growth …


Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Small Gtpase Regulated Intracellular Protein Trafficking In Endothelium, Caitlin Francis Mar 2023

Small Gtpase Regulated Intracellular Protein Trafficking In Endothelium, Caitlin Francis

Electronic Theses and Dissertations

Intracellular protein trafficking is the movement of membrane-bound organelles to and from requisite locations within the cell. Small GTPases are a critical component to the spatiotemporal accuracy of intracellular trafficking pathways as they determine the specificity and direction of organelle transport. There exists over 150 small GTPases categorized into 5 sub-families and are employed across all cell types. Despite their universal expression and relevance to cellular function, small GTPases remain incompletely understood across tissue types. In various instances, the trafficking pathway of a particular Rab in one cell type may belong to a completely disparate pathway in another cell type. …


Dna Damage Response Activates The Electron Transport Chain And Oxidative Metabolism By Two Parallel Mechanisms, Shreya Nagar Jan 2023

Dna Damage Response Activates The Electron Transport Chain And Oxidative Metabolism By Two Parallel Mechanisms, Shreya Nagar

Theses and Dissertations

The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Major part of DDR is coordinated by DNA damage checkpoint (DDC). In addition to DDC, eukaryotic cells also have DNA replication checkpoint (DRC) that is distinct from the DDC and specifically signals slowly progressing or arrested replication forks. DDR involves stalling or arrest of the cell cycle, initiation of DNA repair, and altered regulation of transcription, translation, and the ubiquitin-proteasome system. DDR also triggers transcription shut-off of histone genes. One of the key outcomes of DDC/DRC activation is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), …


The Role Of Myocardin In The Progression Of Non-Small Cell Lung Cancer, Soromidayo Akinsiku Jan 2023

The Role Of Myocardin In The Progression Of Non-Small Cell Lung Cancer, Soromidayo Akinsiku

Biotechnology Theses

Lung cancer is the leading cause of cancer-related mortality in the world and NSCLC accounts for 85% of all lung cancer cases. The mainstay of treatment for patients with stage I, II and IIIA NSCLC is surgery, followed by post-operative cisplatin-based chemotherapy. Additional adjuvant therapy involving targeted tyrosine kinase inhibitors has been in use, however even for the targeted therapy, resistance eventually develops. Therefore, there is a need for identifying novel targets for this life-threatening disease. Given that preliminary studies in Ikebe lab revealed that myocardin knockdown significantly promoted caspase-3 degradation, in this study, using myocardin siRNA, we investigated the …


Modulatory Effects Of Deacetylated Sialic Acids On Breast Cancer Resistance Protein-Mediated Multidrug Resistance And Receptor Tyrosine Kinase-Targeted Therapy, Isaac Tuffour Jan 2023

Modulatory Effects Of Deacetylated Sialic Acids On Breast Cancer Resistance Protein-Mediated Multidrug Resistance And Receptor Tyrosine Kinase-Targeted Therapy, Isaac Tuffour

Electronic Theses and Dissertations

Multidrug resistance (MDR) remains a major challenge in cancer treatment, accounting for over 90% of chemotherapeutic failures. Cancers utilize sugar residues to engage in multidrug resistance. The underlying mechanism of action involving glycans, specifically the glycan sialic acid (Sia) and its various functional group alterations, has not been explored. ATP-binding cassette (ABC) transporter proteins, key proteins utilized by cancers to engage in MDR pathways, contain Sias in their extracellular domains. Modulating the expression of acetylated-Sias on Breast Cancer Resistance Protein (BCRP), a significant ABC transporter implicated in MDR, in lung and colon cancer cells directly impacted the ability of cancer …


A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd Dec 2022

A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce a truly staggering number of diverse extracellular signals including chemical messengers, physical force, and even photons into specific cellular responses through their coupling to heterotrimeric G proteins. G proteins amplify the originating signal through their binding to downstream effectors, activating a complex network of overlapping responses that allow the cell to respond perfectly to that specific stimulus. It is critical to the cell that this process is carried out faithfully in order to respond to the myriad environmental cues and avoid injury, exhaustion, and death for the individual cell or the development of pathology if …


Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown Dec 2022

Bis-Indolyl Compounds And The Induction Of Apoptosis In T98g Glioblastoma Multiforme Cells, Margot C. Brown

Seton Hall University Dissertations and Theses (ETDs)

1,1-bis(3’idolyl)-1(aryl)methane compounds (BIM compounds) have been shown to have anti-cancer properties in colon cancer, bladder cancer, and leukemia cells. The purpose of this work was to determine if BIM compounds could be an effective treatment of glioblastoma multiforme. Sulforhodamine B (SRB) assays showed that 20µM of the BIM compounds could inhibit cellular proliferation of the T98G glioblastoma multiforme cell line over 72 hours. Then immunoblotting was used to analyze the molecular pathway induced by BIM compounds. An increase in the expression of both BAX and cleaved caspase 3 suggest BIM compounds activate programmed cell death, or apoptosis in glioblastoma cells. …


The Role Of Fatty Acid Metabolism In The Pathogenesis Of Trypanosoma Brucei, Nava Poudyal Dec 2022

The Role Of Fatty Acid Metabolism In The Pathogenesis Of Trypanosoma Brucei, Nava Poudyal

All Dissertations

Trypanosoma brucei is the protozoan parasite that causes African Sleeping Sickness in humans and nagana, a wasting disease in cattle. T. brucei completes its life cycle in two hosts, mammals and the tsetse fly insect vector. Due to the geographical restriction of the tsetse fly, the disease is endemic in sub-Saharan Africa. Both the insect and mammalian forms of the parasite need fatty acids to anchor their surface proteins. We worked on three projects on fatty acid metabolism and its role in immune evasion strategies of T. brucei. First, we assessed the role of T. brucei surface proteins in …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson Aug 2022

Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson

Chemistry & Biochemistry Undergraduate Honors Theses

Known to cause gas gangrene, Hathewaya histolytica secretes two sister collagenases, collagenase G (Col G) and collagenase H (Col H), to degrade the triple helical structure of collagen to further infection in a host. Individual domains of Col H have been crystalized in previous studies, but methods in x-ray crystallization of full-length Col H have been unsuccessful. Using Small Angle X-Ray Scattering (SAXS) data, atomistic modeling was used to generate multiple conformations of Col H while accounting for flexibility between domains. Full-length Col H was found to adopt a two-state conformational model exhibiting a majority compact and a minority elongated …


Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes Aug 2022

Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes

All Dissertations

Cryptococcus neoformans is an opportunistic fungal pathogen, infecting mainly immunocompromised individuals. As the main cause of cryptococcosis, it is responsible for over 180,000 deaths every year. As an environmental yeast, it has unique adaptations that allow it to proliferate in the human host. Among these adaptations its capacity to transition to an extreme phenotype known as Titan cells is of special interest to researchers. With sizes above 10 um and able to reach 70 um or more in cell size. This size is accompanied with a large vacuole, larger polysaccharide capsule, and an increased resistance to fluconazole (FLC). FLC is …


Deciphering Phosphoprotein Phosphatase Signaling Networks Using Proteomics Approaches, Brooke Brauer Jun 2022

Deciphering Phosphoprotein Phosphatase Signaling Networks Using Proteomics Approaches, Brooke Brauer

Dartmouth College Ph.D Dissertations

Protein phosphorylation is a highly regulated mechanism of cell signaling control and its deregulation is implicated in disease. The kinases that catalyze the addition of phosphate groups onto their substrate proteins have been well studied, their signaling pathways mapped, and their effects on cell and organismal health observed. Knowledge of the phosphatases that reverse the reaction only recently began to come into focus. Phosphoprotein phosphatases (PPPs), long thought to be housekeeping enzymes, are now known to be exquisitely specific towards their substrates, but the exact nature of phosphatase regulation—both upstream and downstream of the phosphatase—is unclear.

PPPs recognize substrates through …


Lipid Raft Disruption Alters Human Follicle Stimulating Hormone Receptor Signaling, Rachel Judith Godek Jun 2022

Lipid Raft Disruption Alters Human Follicle Stimulating Hormone Receptor Signaling, Rachel Judith Godek

Honors Theses

Over 6.7 million people struggle with infertility each year. Studying signaling by reproductive hormones in fertility can allow us to gain a better understanding of the signaling pathways that must function correctly for proper fertility. Some infertility is due to incorrect human follicle stimulating hormone receptor (hFSHR) function. When follicle stimulating hormone (FSH) binds to hFSHR this begins a signaling cascade where the end product is the maturation of sperm by Sertoli cells in men, and egg development and production of estrogen through stimulation of granulosa cells in women. It has been determined that hFSHR is localized to microdomains of …


Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn Jun 2022

Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn

Honors Theses

Human infertility is a complex disorder that can often be attributed to a dysfunction of the endocrine system. Follicle-stimulating hormone (FSH) is one of many hormones that participate in a complex process in both women and men to regulate normal reproduction. The dysfunction of this hormone and its receptor are some of the many causes of infertility. FSH is secreted by the anterior pituitary and, in women, initiates a cascade of biological events that enable ovulation. FSH carries out its function by binding and activating specific receptors. The FSH receptor (FSHR) is a G protein-coupled receptor (GPCR) that is located …