Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Biochemistry

Defining The Role Of Phosphorylation And Dephosphorylation In The Regulation Of Gap Junction Proteins, Hanjun Li Dec 2016

Defining The Role Of Phosphorylation And Dephosphorylation In The Regulation Of Gap Junction Proteins, Hanjun Li

Theses & Dissertations

Gap junctions are intercellular channels that permit the free passage of ions, small metabolites, and signaling molecules between neighboring cells. In the diseased human heart, altered ventricular gap junction organization and connexin expression (i.e., remodeling) are key contributors to rhythm disturbances and contractile dysfunction. Connexin43 (Cx43) is the dominant gap junction protein isoform in the ventricle which is under tight regulation by serine/tyrosine phosphorylation. Phosphorylation and dephosphorylation regulate many aspects of Cx43 function including trafficking, assembly and disassembly, electrical and metabolic coupling at the plaque, as well as to modulate the interaction with other proteins.

Serine phosphorylation has long been …


Regulation Of Alteration/Deficiency In Activation 3 (Ada3) By Acetylation And Its Role In Cell Cycle Regulation And Oncogenesis, Shashank Srivastava Dec 2016

Regulation Of Alteration/Deficiency In Activation 3 (Ada3) By Acetylation And Its Role In Cell Cycle Regulation And Oncogenesis, Shashank Srivastava

Theses & Dissertations

The ADA3 (Alteration/Deficiency in Activation 3) protein is a transcriptional adaptor protein that was initially discovered as a component of several HAT (Histone Acetyltransferase) complexes, the enzyme complex responsible for histone acetylation, which is a prerequisite for transcription. Earlier the studies from Dr. Band’s laboratory and that of others’ have deciphered a crucial role of ADA3 in cell cycle regulation (both through G1/S and G2/M phase transitions) and in maintaining the genomic stability.

While our laboratory investigated the mechanism behind the role of ADA3 in G1/S transition, the same remained unknown for G2 …


Mitogen And Morphogen Signaling Dysregulation: Pathophysiological Influence In Pancreatic Cancer And Alzheimer’S Disease, Eric Cruz Dec 2016

Mitogen And Morphogen Signaling Dysregulation: Pathophysiological Influence In Pancreatic Cancer And Alzheimer’S Disease, Eric Cruz

Theses & Dissertations

Although the etiology of a particular disease will vary, there are genetic and epigenetic bottlenecks that frequently converge resulting in dysregulation of mitogenic and morphogenetic signaling. This propensity is acutely experienced in malignancy and neurodegenerative disease.

Here, we have first investigated the role of dysregulated signaling in the context of pancreatic cancer (PC). Morphogenetic signaling has been regarded as a pleiotropic pathway with the potential to promote and inhibit metastatic features. Our investigation of bone morphogenetic protein 2 (BMP-2), an archetypical member of the BMP superfamily, has revealed the presence of extracellular, intracellular, and long non-coding RNA products. Our findings …


Engineered Human Acidic Fibroblast Growth Factor (Fgf1) With An Enhanced Thermal And Proteolytic Stability, Duaa Abdullah Almansaf Dec 2016

Engineered Human Acidic Fibroblast Growth Factor (Fgf1) With An Enhanced Thermal And Proteolytic Stability, Duaa Abdullah Almansaf

Graduate Theses and Dissertations

Fibroblast growth factor receptor (FGFR) is made up of three significant domains. The most important domain is the intracellular domain where the dimerization and autophosphorylation occur. Fibroblast growth factor (FGF) interacts with specific FGFR to regulate many cellular processes during the embryonic stage. Furthermore, FGF is significant for adults because FGF plays an important role in regulating cellular differentiation as well as wound healing. The cellular regulating processes are initiated through binding FGF to heparin followed by binding FGF/heparin to FGFR to form FGF/heparin/FGFR complex. Thus, FGFR is dimerized and autophosphorylated. The phosphorylation of FGFR triggers downstream signaling pathways, which …


Influence Of Ph And Acidic Side Chain Charges On The Behavior Of Designed Model Peptides In Lipid Bilayer Membranes, Venkatesan Rajagopalan Dec 2016

Influence Of Ph And Acidic Side Chain Charges On The Behavior Of Designed Model Peptides In Lipid Bilayer Membranes, Venkatesan Rajagopalan

Graduate Theses and Dissertations

The molecular properties of transmembrane proteins and their interactions with lipids regulate biological function. Of particular interest are interfacial aromatic residues and charged residues in the core helix whose functions range from stabilizing the native structure to regulating ion channels. This dissertation addresses the pH dependence and influence of potentially negatively charged tyrosine, glutamic acid or aspartic acid side chains. We have employed GWALP23 (acetyl-GGALW5LALALALALALALW19LAGA-amide) as favorable host peptide framework. We have substituted W5 with Tyr (Y5GWALP23) and Leu residues with Glu (L12E, L14E or L16E) or Asp (L14D or L16D), and have incorporated specific 2H-labeled alanine residues within the …


Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang Sep 2016

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang

Dissertations, Theses, and Capstone Projects

An essential first step in bacterial division is the assembly of a cytokinetic ring (Z-ring) formed by the tubulin-like FtsZ at midcell. The highly conserved core domain of FtsZ has been reported to mediate assembly of FtsZ polymers in vivo and in vitro. Species-specific differences in the FtsZ C-terminal domain such as the FtsZ CTV region and interactions with several modulatory proteins such as ZapC and ZapD, restricted to certain bacterial classes, also serve as key determinants of FtsZ protofilament bundling. Here, we characterize (i) the roles of the FtsZ CTV region in mediating both longitudinal and lateral interactions …


Role Of Ddr1 In Pancreatic Cancer, Huocong Huang Aug 2016

Role Of Ddr1 In Pancreatic Cancer, Huocong Huang

Theses & Dissertations

Pancreatic ductal adenocarcinomas are highly malignant cancers, characterized by extensive invasion into surrounding tissues, metastasis to distant organs at a very early stage, and a limited response to therapy. One of the main features of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of a mesenchymal cadherin, N-cadherin. Our previous studies have shown that up-regulation of N-cadherin can promote tumor cell invasion and that collagen I-induced EMT is through two …


Intestinal Cytoplasmic Lipid Droplets, Associated Proteins, And The Regulation Of Dietary Fat Absorption, Theresa M. D'Aquila Aug 2016

Intestinal Cytoplasmic Lipid Droplets, Associated Proteins, And The Regulation Of Dietary Fat Absorption, Theresa M. D'Aquila

Open Access Dissertations

Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, and cardiovascular disease. The small intestine absorbs dietary fat through an efficient multi step process of digestion, uptake, metabolism, and secretion or storage. When dietary fat is taken up by the absorptive cells of the small intestine, enterocytes, it can be secreted into circulation where it contributes to blood lipid levels or temporarily stored in cytoplasmic lipid droplets (CLDs). The objective of this dissertation is to investigate …


Defining The Functions Of Usp22 And Usp44 In Regulation Of H2bub1 Levels, Xianjiang Lan Aug 2016

Defining The Functions Of Usp22 And Usp44 In Regulation Of H2bub1 Levels, Xianjiang Lan

Dissertations & Theses (Open Access)

Aberrant levels of histone ubiquitination are involved in various human diseases including neurodegenerative disorders and cancers. Particularly, Histone H2B monoubiquitination (H2Bub1) is highly associated with gene regulation in both normal cells and diseases. Many deubiquitinases (mainly USPs) are defined to regulate global H2Bub1 levels. However, how these USPs are regulated and how they contribute to diseases are not well understood.

USP22, part of the deubiquitination module (DUBm) in the SAGA complex, is a well-defined regulator of H2Bub1 levels. ATXN7, another crucial subunit of the SAGA DUBm, is involved in a neurodegenerative disease, spinocerebellar ataxia type 7 (SCA7), due to a …


Characterization Of Numb As A Regulator Of Anaplastic Lymphoma Kinase, Ran Wei Jun 2016

Characterization Of Numb As A Regulator Of Anaplastic Lymphoma Kinase, Ran Wei

Electronic Thesis and Dissertation Repository

Cellular events rely on protein-protein interactions that are often mediated by modular domains which recognize particular sequence motifs in binding partners. The NUMB protein is the first described cell fate determinant and multifaceted adaptor that is involved in a wide variety of cellular events. NUMB mainly mediates protein interactions via its modular PTB domain. Here we present a systematic investigation of the NUMB-PTB interactome by employing an integrative strategy combining both protein and peptide arrays. We profiled NUMB-PTB binding specificity and interacting proteins genome-wide. The receptor tyrosine kinases (RTKs) are found highly enriched in the interactome, raising the possibility that …


Mechanism Of Calcium-Dependent Chloride Channel Activation By The Secreted Regulator Clca1, Zeynep Yurtsever May 2016

Mechanism Of Calcium-Dependent Chloride Channel Activation By The Secreted Regulator Clca1, Zeynep Yurtsever

Arts & Sciences Electronic Theses and Dissertations

The calcium-activated chloride channel regulator (CLCA) proteins are key signaling molecules, which are implicated in various diseases through their tissue-specific expression. Human CLCA1 protein, overexpressed in airway epithelia under pathophysiological conditions, is centrally involved in the manifestation of IL-13-driven mucus cell metaplasia (MCM), a hallmark feature of asthma and chronic obstructive pulmonary disease (COPD), for which there are currently no available therapeutics. Elucidating the poorly understood molecular basis of CLCA1 function is thus required to design specific inhibitors of CLCA1 activity to treat MCM in asthma and COPD.

Originally misannotated as ion channels, CLCA proteins are secreted soluble proteins that …


Purification Of A Bacteriophage Protein Involved In Host Range Specificity, Alec Brown May 2016

Purification Of A Bacteriophage Protein Involved In Host Range Specificity, Alec Brown

Honors Projects

The Escherichia coli ferric hydroxamate uptake receptor FhuA serves as the receptor for ferrichrome-Fe(III) complexes, with TonB protein energizing the active transport of the complex. The FhuA receptor is exploited by a variety of bacteriophages as a conduit into the cell. Interestingly, certain of these phages carry a gene called “Cor”, the product of which, when cloned and expressed from a plasmid, blocks transport by FhuA. In the present study, components of the cor gene from the bacteriophage ϕ80 were used to construct an IPTG-inducible MalE-Cor-His6 fusion protein, which allowed for affinity purification of the Cor protein. At 61 residues …


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER …


The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan May 2016

The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan

Dissertations & Theses (Open Access)

The transcription factor NF-κB plays a central role in many aspects of biological processes and diseases, such as inflammation and cancer. Although it has been suggested thatNF-κB is critical in tumorigenesis and tumor progression, the molecular mechanism by which NF-κB is activated in solid tumor remains largely unknown. In the current work, we focus on growth factor receptor-induced NF-κB activation and tumor progression, including epidermal growth factor receptor (EGFR)-induced NF-κB in lung cancer and heregulin receptor (HER2)-induced NF-κB in breast cancer. We found that Mucosa-associated lymphoma translocation protein 1 (MALT1), also known as paracaspase, is required for EGFR-induced NF-κB activation …


Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel May 2016

Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are family of proteins that belong to a group of growth factors that are found in mammals and play an important role in angiogenesis, differentiation, organogenesis, and tissue repair. In summary, their main functionality is involved in cell division and proliferation. Because FGFs plays such a vital role in cell proliferation, they are mainly involved in the process of wound healing and injuries. FGF binds to its ligand, heparin—a heavily sulfated glycosaminoglycan. The binding of heparin to FGF occurs through electrostatic interactions, specifically between the negatively charged sulfate groups on heparin and positively charged residues such …


In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard May 2016

In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard

Undergraduate Honors Theses

Atherosclerosis, characterized by the build-up of cholesterol, immune cells and cellular debris within arterial walls, is accelerated following myocardial infarction by poorly understood mechanisms. Ubiquitin, a small, well-studied intracellular protein involved in protein turnover via the proteasome pathway, has recently been shown to exert extracellular effects on cardiac myocytes, in vitro, and in mice undergoing myocardial remodeling. This study investigates the potential role of extracellular ubiquitin in atherosclerosis by determining its effects on two critical atherosclerotic processes: the migration of vascular smooth muscles cells and the uptake of modified LDL by monocyte/macrophages in foam cell formation. In the presence …


Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely May 2016

Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely

Electronic Theses and Dissertations

Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule that functions to facilitate bacteria-bacteria communication. C12 has also been reported to affect many aspects of human host cell physiology, including evoking cell death in various types of cells. However, the signaling pathway(s) leading to C12-triggerred cell death remains unclear. To clarify cell death signaling induced by C12, we examined mouse embryonic fibroblasts (MEFs) deficient in one or more caspases. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in cells, probably through the direct induction of mitochondrial membrane permeabilization. Previous studies indicate that …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Studies Towards Broadening The Substrate Profile And Regulation Of Histone Deacetylase 1, Dhanusha Ashanthi Nalawansha Jan 2016

Studies Towards Broadening The Substrate Profile And Regulation Of Histone Deacetylase 1, Dhanusha Ashanthi Nalawansha

Wayne State University Dissertations

Aberrant expression of histone deacetylase 1 (HDAC1) is implicated in multiple diseases, including cancer. As a consequence, HDAC1 has emerged as an important therapeutic target for drug development. HDAC1 regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating both histone and non-histone substrates. Due to the lack of simple tools to identify physiological substrates of HDAC1, the full spectrum of HDAC1 activities in the cell remains unclear. Here, we employed a substrate trapping strategy to identify cellular substrates of HDAC1. Using this approach, we identified mitosis-related protein Eg5 as a substrate. HDAC1 colocalizes with Eg5 …


The Role Of Src Kinase Activation In Lung Epithelial Alterations In Response To The A,B-Unsaturated Aldehyde Acrolein, Robert Bauer Jan 2016

The Role Of Src Kinase Activation In Lung Epithelial Alterations In Response To The A,B-Unsaturated Aldehyde Acrolein, Robert Bauer

Graduate College Dissertations and Theses

Cigarette smoke (CS) exposure is the leading cause of preventable death in the United States contributing to over 480,000 deaths a year with over 300 billion dollars in CS related costs spent per year. While the dangers of CS exposure have been studied and characterized for decades being largely attributed to reactive oxygen species and oxidative stress, increasing evidence suggests that reactive aldehydes in CS, specifically the α,β-unsaturated aldehyde acrolein, are responsible for many of the negative pathologies associated CS exposure. Previous work has shown that acrolein can bind directly to a number of cellular proteins containing redox sensitive cysteine …