Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biotechnology

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 91

Full-Text Articles in Biochemistry

The Impact Of A Non-Ionic Adjuvant To The Persistence Of Pesticides On Produce Surfaces, Daniel Barnes Mar 2024

The Impact Of A Non-Ionic Adjuvant To The Persistence Of Pesticides On Produce Surfaces, Daniel Barnes

Masters Theses

Adjuvants can enhance the performance of the pesticide active ingredients in many ways including decreasing surface tension and reducing evaporation. Understanding how adjuvants effect pesticide behavior (e.g., surface persistence) is crucial for developing effective pesticide formulations, as well as facilitating the development of effective approaches to reduce pesticide residues from the surface of fresh produce post-harvest. The objective of this study is to investigate the effect of a non-ionic surfactant, Surf-Ac 910, on the persistence of two model pesticides, thiabendazole and phosmet on apple surfaces. The result shows that the addition of Surf-Ac 910 increased both the maximum wetted area …


Mechanistic Analysis Of Four-Way Dna Junctions And Cytokine-Binding Aptamers For Therapeutic Interventions, Roaa S. Mahmoud Jan 2024

Mechanistic Analysis Of Four-Way Dna Junctions And Cytokine-Binding Aptamers For Therapeutic Interventions, Roaa S. Mahmoud

Theses and Dissertations

DNA is inherently dynamic and topologically diverse and can fold into many different structures. Besides the canonical Watson-Crick structure, other higher-order structures such as G-quadruplexes (G4), i-motifs (iM), and four-way DNA junctions are possible. Although these high-order DNA structures are known to form transiently, they are important due to the crucial roles they play in many cellular processes including DNA replication, recombination, and repair. Among these DNA structures, 4-way junctions (also known as Holliday junctions, HJ) which are formed during the repair of double-strand DNA breaks (DSBs) and interact with proteins have garnered significant attention due to their central role …


Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield Dec 2023

Flavonol Glucosylation: A Structural Investigation Of The Flavonol Specific 3-O Glucosyltransferase Cp3gt, Aaron S. Birchfield

Electronic Theses and Dissertations

Flavonoid glycosyltransferases (GTs), enzymes integral to plant ecological responses and human pharmacology, necessitate rigorous structural elucidation to decipher their mechanistic function and substrate specificity, particularly given their role in the biotransformation of diverse pharmacological agents and natural products. This investigation delved into a comprehensive exploration of the flavonol 3-O GT from Citrus paradisi (Cp3GT), scrutinizing the impact of a c-terminal c-myc/6x histidine tag on its enzymatic activity and substrate specificity, and successfully achieving its purification to apparent homogeneity. This established a strong foundation for potential future crystallographic and other structure/function analyses. Through the strategic implementation of site-directed mutagenesis, a thrombin …


Advances In Phaeodactylum Tricornutum Nuclear Engineering, Mark Pampuch Jul 2023

Advances In Phaeodactylum Tricornutum Nuclear Engineering, Mark Pampuch

Electronic Thesis and Dissertation Repository

The marine diatom Phaeodactylum tricornutum has the potential to become an excellent platform for the sustainable production of valuable compounds and pharmaceuticals, but currently large-scale engineering of this organism remains a challenge due factors like inefficient genetic transformation protocols and a lack of accurate genomic data. This thesis addresses these two bottlenecks by (i) optimizing an electroporation protocol to P. tricornutum and (ii) remapping genomic data from a scaffolded genome assembly to a telomere-to-telomere genome assembly. An optimized transformation protocol was developed that could consistently transform blunt-ended and DNA with overhangs and yielded up to 1000+ colony forming units per …


Review Of Biomedical Applications Of Cardiovascular Tissue Engineering, Natalie M. Howard May 2023

Review Of Biomedical Applications Of Cardiovascular Tissue Engineering, Natalie M. Howard

Honors College Theses

Tissue engineering can be defined as processes that aim to generate three-dimensional functional tissues in vitrothat have been favorably altered according to the structural, biochemical, electrophysiological, and biomechanical properties of the desired tissue before implantation into the human body. In relation to cardiac tissues, these properties would include the ability to conduct action potentials, withstand systolic pressure, permit sufficient O2 and CO2penetration, sufficient vascularization to supply nutrients for cellular activity, surface topology that enables cellular communication, and more. As heart diseases and instances of myocardial infarction continue to rise worldwide, there is an increasing need for …


Electrochemical Reduction Of Carbon Dioxide Using Ruthenium And Amines, Sydney Moise Apr 2023

Electrochemical Reduction Of Carbon Dioxide Using Ruthenium And Amines, Sydney Moise

Honors Theses

With an increased concern for climate change in the recent years, a significant area of research has been devoted to the reduction of greenhouse gases. Carbon dioxide (CO2) resides in the atmosphere between 300 – 1000 years, making the reduction of the molecule a substantial field of study.1 Amines have been used as CO2 scrubbing agents in literature historically, due to their ability to form bonds to carbon.2 Although studies involving metal catalysts and amines have been reported numerous times, research involving chemical reduction of CO2 using purely amines is scarce. In this paper, amines, in addition to hydride donors …


Leveraging Bio-Inspired Molecules For Cancer Theranostics, Douglas S. Macpherson Feb 2023

Leveraging Bio-Inspired Molecules For Cancer Theranostics, Douglas S. Macpherson

Dissertations, Theses, and Capstone Projects

A variety of molecules can be radiolabeled and delivered to a cancer site for the purposes of diagnostics and therapy. Among the most promising of tumor targeting molecules are peptides and antibodies. These bio-inspired molecules can be designed and synthesized to target and respond to cancer cells based on the properties of those cells. Matrix metalloproteinase (MMP) enzymes are over-expressed by some metastatic cancers, in which they are responsible for the degradation and remodeling of the extracellular matrix. In recent years, MMPs have emerged as promising targets for enzyme-responsive diagnostic probes because oligopeptides can be designed to be selectively hydrolyzed …


The Role Of Myocardin In The Progression Of Non-Small Cell Lung Cancer, Soromidayo Akinsiku Jan 2023

The Role Of Myocardin In The Progression Of Non-Small Cell Lung Cancer, Soromidayo Akinsiku

Biotechnology Theses

Lung cancer is the leading cause of cancer-related mortality in the world and NSCLC accounts for 85% of all lung cancer cases. The mainstay of treatment for patients with stage I, II and IIIA NSCLC is surgery, followed by post-operative cisplatin-based chemotherapy. Additional adjuvant therapy involving targeted tyrosine kinase inhibitors has been in use, however even for the targeted therapy, resistance eventually develops. Therefore, there is a need for identifying novel targets for this life-threatening disease. Given that preliminary studies in Ikebe lab revealed that myocardin knockdown significantly promoted caspase-3 degradation, in this study, using myocardin siRNA, we investigated the …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder Dec 2022

Nanoparticle Conjugated Photosensitizer For Targeted Photodynamic Inactivation Of Cancer Cells, Symone D. Crowder

Honors College Theses

Photodynamic therapy (PDT) is considered to be a potential replacement for traditional methods of chemotherapy. It includes the administration of photosensitizing agents (PS), which generate reactive oxygen species (ROS) upon excitation at a specific wavelength. With new outlooks and techniques, cancer research is advancing each day. It has allowed the progress of several theranostic drug delivery systems (DDS) exploring the area of nanomedicine.2 In the present work, a Rhodamine derivative, Rhodamine 6G (R6G) was used as the PS. In general, rhodamine compounds undergo cytotoxic reactions on photoexcitation by electron transfer reactions with folic acid within cells, making them a favorable …


Investigation Of Kinase Conformational Dynamics And Analytes Detection With Protein Nanopore, Fanjun Li Oct 2022

Investigation Of Kinase Conformational Dynamics And Analytes Detection With Protein Nanopore, Fanjun Li

Doctoral Dissertations

Protein nanopores are pore-forming proteins which have been developed as single-molecule biosensors. Due to the high sensitivity, selectivity, label-free and real-time detection methodology, protein nanopores have been used for a wide variety of applications. In this dissertation, we use ClyA nanopore to investigate kinase conformational dynamics and develop a kinase/nanopore system for the specific detection of kinase allosteric inhibitors. Besides, we engineer OmpG nanopore to be a sensor for nucleic acid detection. Protein kinases play essential roles in cellular regulation by catalyzing the phosphorylation of target proteins and are promising drug targets. The conformational dynamics are critical for kinase functions. …


Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias Sep 2022

Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias

Chemistry Theses

Protein cages found in nature have the ability to protect and develop new nanomaterials in order to enhance catalytic reactions. This is due to the ability of these organelle structures to mimic protein-based organelles such as Virus-Like Particles (VLPs). VLPs have the ability to not only resemble virus protein structures but to encapsulate enzymes while retaining their activity. This research examines the in vitro encapsulation withing the bacteriophage P22 derived VLP, and show that some enzymes may require a delay in encapsulation to allowed proper folding

and maturation before they can be encapsulated inside P22 as fully active enzymes. Exploring …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Spatially Controlled Monolayers For Electrically Switchable Biomolecule Detection, Eduard Lukhmanov Jan 2022

Spatially Controlled Monolayers For Electrically Switchable Biomolecule Detection, Eduard Lukhmanov

Theses, Dissertations and Capstones

The development of biosensors that are low-waste, highly stable, and possess an ability to be interchanged between capturing and non-capturing configurations is promising for the biodetector field. Stable packing and attachment of the sensor, the ability to create an interchangeable detecting probe of interest relatively easily, and dynamic control of the probe via a reversible bias can provide for that. With the set goals to control all those properties, DNA-dendron conjugate molecules were designed, synthesized in solution, purified, and utilized to make self-assembled monolayers of single-stranded DNA on gold. To be able to manipulate the conjugates’ sensing qualities in the …


Investigation Of A Carbon Monoxide Dehydrogenase From An Uncultured Archaeon, Luke Moore Jan 2022

Investigation Of A Carbon Monoxide Dehydrogenase From An Uncultured Archaeon, Luke Moore

Dissertations, Master's Theses and Master's Reports

The Nickel based Carbon Monoxide Dehydrogenase (CODH) is an anaerobic metalloenzyme responsible for the reversible conversion of CO and water into CO2 and 2 protons and 2 electrons. This enzyme has importance in the environment as one of Earth’s first carbon fixation pathways, and for human uses as a potential source of biofuels and other commodity chemicals. CODH enzymes are present in a wide array of taxa, many of which are uncultured. In this study we express and purify the catalytic subunit (CooS) of the anaerobic CODH from an uncultured Hydrothermarchaeota JdFR-17 co-expressed with the nickel insertion accessory protein (CooC) …


Functionalization Of Chitosan Based Microparticles For In Vitro 3d Culture Of Human Liver Cells, William Imes Jan 2022

Functionalization Of Chitosan Based Microparticles For In Vitro 3d Culture Of Human Liver Cells, William Imes

Williams Honors College, Honors Research Projects

Previous work involving 3D culture of human liver cells with fluorinated chitosan based microparticles has shown that their incorporation provides needed structural cues that the culture of cells alone does not provide, such as increased gas transport. However, using bare microparticles to grow large 3D cellular structures is not practical as they tend to collapse before any meaningful research can be done on them. It is proposed that this is because of the lack of extracellular matrix (ECM)components within pure cell culture in vitro, which in their absence cannot adequately facilitate biochemical communication and adhesion between cells. It is …


Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck Jan 2022

Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck

Theses and Dissertations--Pharmacy

In the U.S., anxiety is recognized as an increasing range of mentally and physically debilitating psychiatric health disorders with significant economic repercussions. Over the last 20 years, several novel anti-anxiety therapies have entered the drug development pipeline, but none have made it to market.

The work in this dissertation focused on structurally modifying valerenic acid (VA), a structurally unique carboxylated sesquiterpene acid found in Valeriana officinalis. VA is putatively reported to have allosteric modulatory activity of the human GABAA receptor, a ligand-gated ion channel responsible for attenuating neurotransmissions. Structural modeling of VA’s GABAA receptor interaction suggests that …


A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur Dec 2021

A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur

Theses & Dissertations

Members of the protein kinase C (PKC) family of serine/threonine kinases are involved in regulation of fundamental cellular functions, including proliferation, differentiation, survival, migration, and transformation. Increasing evidence points to anti-proliferative and tumor suppressive role of PKCs. Our laboratory and others have reported that the classical PKC isozyme, PKCαnegatively regulates proliferation and tumorigenesis in the intestinal epithelium. Our laboratory has further determined that PKCα signaling induces a program of cell cycle withdrawal in intestinal epithelial cells that involves downregulation of the pro-proliferative proteins, cyclin D1 and Id1, and upregulation of the cyclin dependent kinase (CDK) inhibitor, p21Cip1. Unexpectedly, …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Insights Into Halophilic Microbial Adaptation: Analysis Of Integrons And Associated Genomic Structures And Characterization Of A Nitrilase In Hypersaline Environments, Sarah Sonbol Aug 2021

Insights Into Halophilic Microbial Adaptation: Analysis Of Integrons And Associated Genomic Structures And Characterization Of A Nitrilase In Hypersaline Environments, Sarah Sonbol

Theses and Dissertations

Hypersaline environments are extreme habitats that can be exploited as biotechnological resources. Here, we characterized a nitrilase (NitraS-ATII) isolated from Atlantis II Deep brine pool. It showed higher thermal stability and heavy metal tolerance compared to a closely related nitrilase.

We also studied integrons in halophiles and hypersaline environments. Integrons are genetic platforms in which an integron integrase (IntI) mediates the excision and integration of gene cassettes at specific recombination sites. In order to search for integrons in halophiles and hypersaline metagenomes, we used a PCR-based approach, in addition to different bioinformatics tools, mainly IntegronFinder.

We found that integrons and …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Molecular Dynamics Simulations Provide Insight Into Stability Of Hyperthermophilic Endoglucanases, Logan E. Sheffield Jun 2021

Molecular Dynamics Simulations Provide Insight Into Stability Of Hyperthermophilic Endoglucanases, Logan E. Sheffield

Electronic Theses and Dissertations

Endoglucanases play a key role in the industrial production of bioethanol, but the most efficient method requires the utilization of high temperatures and is currently limited by the thermostability of endoglucanases. For this reason, it would be beneficial to discover more high-efficiency, thermostable enzymes to utilize in the hydrolytic process. In this study molecular dynamics simulations were performed on structurally similar endoglucanases with varying levels of thermostability to gain insight on what factors contribute to thermostability in endoglucanases. RMSD, RMSF, PCA, hydrogen bonding and salt bridges were analyzed. Finally, protein energy networks were constructed from nonbonded interaction potentials and analysis …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Development Of Fluorescence Microscopy Approaches To Study Subcellular Protein Transport And Enzymatic Activity, Anchal Singh Jan 2021

Development Of Fluorescence Microscopy Approaches To Study Subcellular Protein Transport And Enzymatic Activity, Anchal Singh

Masters Theses

Understanding the subcellular localization of proteins and their activity is important in understanding their normal function in eukaryotic cells. Fluorescence cellular imaging techniques can selectively and sensitively visualize subcellular biochemistry. Using this approach, two different methods were employed in this thesis. The first focused on studying protein import into peroxisome and the other on monitoring the activity of an endoplasmic reticulum (ER)-localized enzyme, human carboxylesterase 1 (CES1).

Peroxisomes are mainly known as the center for long chain fatty acid b-oxidation as well as the production and detoxification of hydrogen peroxide. Proteins which are needed in the peroxisomes are encoded in …


Applications Of Machine Learning In Microbial Forensics, Ryan B. Ghannam Jan 2021

Applications Of Machine Learning In Microbial Forensics, Ryan B. Ghannam

Dissertations, Master's Theses and Master's Reports

Microbial ecosystems are complex, with hundreds of members interacting with each other and the environment. The intricate and hidden behaviors underlying these interactions make research questions challenging – but can be better understood through machine learning. However, most machine learning that is used in microbiome work is a black box form of investigation, where accurate predictions can be made, but the inner logic behind what is driving prediction is hidden behind nontransparent layers of complexity.

Accordingly, the goal of this dissertation is to provide an interpretable and in-depth machine learning approach to investigate microbial biogeography and to use micro-organisms as …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Ionic Mechanism Of Lysosomal Function And Cell Metabolism, Jian Xiong Dec 2020

Ionic Mechanism Of Lysosomal Function And Cell Metabolism, Jian Xiong

Dissertations & Theses (Open Access)

Two Pore Channels (TPCs) are endolysosomal ion channels that are permeable to sodium and calcium. Defects in TPCs have been implicated to impair vesicle trafficking, autophagy and cell metabolism control; however, the detailed mechanism remains largely unknown. In this study, I show that TPCs are critical for appropriate cargo delivery to the lysosomes and deletion of either TPC1 or TPC2 leads to delayed clearance of autophagosomes, resulting in enlarged lysosomes and accumulated contents inside the lysosomes. Cells with both TPC deleted also exhibit 50% reduction in lysosomal amino acids under normal culture conditions, leading to reduced homeostatic mTORC1 activation.

Glutamine …


Development Of A Thermosensitive Endonuclease To Act As A Plasmid Kill-Switch, Christopher D. Leichthammer Nov 2020

Development Of A Thermosensitive Endonuclease To Act As A Plasmid Kill-Switch, Christopher D. Leichthammer

Electronic Thesis and Dissertation Repository

Biocontainment is an integral part of biomedical research that aims to protect the environment and human health by containing hazardous or invasive organisms in the laboratory. Containment systems often rely on elaborate genetic circuits; however, cells may escape containment by developing mutations that render the genetic circuits inviable or resistant to killing mechanisms. The aim of this thesis was to create a site-specific nuclease for biocontainment of plasmids in the mammalian gastrointestinal tract. LAGLIDADG homing endonucleases would be good candidate nucleases for a biocontainment system as they are resistant to mutations in their coding sequence and their target sequence in …


Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright Jul 2020

Characterization Of The Overexpression Of The Native H+-Pumping Pyrophosphatase In The Microalga Picochlorum Soloecismus, Kimberly T. Wright

Biology ETDs

Microalgae are of interest for the creation of sustainable and cost competitive alternatives to petroleum-based fuels and chemicals. However, cultivation, extraction and processing of algal biomass requires improved yields to achieve economic feasibility. The advancement of microalgal biotechnology and various genetic engineering techniques allow the improvement of microalgae biomass for this purpose. Here, the characterization of the overexpression of the native vacuolar H+ pumping pyrophosphate (AVP1) in Picochlorum soloecismus was examined. AVP1 overexpression causes biomass increase in relevant plant crops. When overexpressed in this microalga it increases carbon storage in the form of starch in a closed laboratory photobioreactor. However, …


Analysis Of Biofilm Remediation Capacity For Octenyl Succinic Anhydride (Osa), A Bioactive Food Starch Modifier Compound, Matthew R. Borglin Jun 2020

Analysis Of Biofilm Remediation Capacity For Octenyl Succinic Anhydride (Osa), A Bioactive Food Starch Modifier Compound, Matthew R. Borglin

Master's Theses

Matthew R. Borglin

This thesis demonstrates efficacy of Octenyl Succinic Anhydride (OSA), as a biofilm sanitizer. Biofilms allow bacteria to adhere to solid surfaces with the use of excreted polymeric compounds. For example, surfaces found in food production or processing facilities such as the interior of a raw milk holding tank, are some of the most susceptible to biofilm contamination. When present, biofilms can cause a variety of negative effects, which include; reduction of product shelf life, corrosion, and outbreaks of foodborne illnesses. The close association of biofilms with the majority of foodborne illness cases led the US Environmental Protection …