Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry

A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur Dec 2021

A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur

Theses & Dissertations

Members of the protein kinase C (PKC) family of serine/threonine kinases are involved in regulation of fundamental cellular functions, including proliferation, differentiation, survival, migration, and transformation. Increasing evidence points to anti-proliferative and tumor suppressive role of PKCs. Our laboratory and others have reported that the classical PKC isozyme, PKCαnegatively regulates proliferation and tumorigenesis in the intestinal epithelium. Our laboratory has further determined that PKCα signaling induces a program of cell cycle withdrawal in intestinal epithelial cells that involves downregulation of the pro-proliferative proteins, cyclin D1 and Id1, and upregulation of the cyclin dependent kinase (CDK) inhibitor, p21Cip1. Unexpectedly, …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Insights Into Halophilic Microbial Adaptation: Analysis Of Integrons And Associated Genomic Structures And Characterization Of A Nitrilase In Hypersaline Environments, Sarah Sonbol Aug 2021

Insights Into Halophilic Microbial Adaptation: Analysis Of Integrons And Associated Genomic Structures And Characterization Of A Nitrilase In Hypersaline Environments, Sarah Sonbol

Theses and Dissertations

Hypersaline environments are extreme habitats that can be exploited as biotechnological resources. Here, we characterized a nitrilase (NitraS-ATII) isolated from Atlantis II Deep brine pool. It showed higher thermal stability and heavy metal tolerance compared to a closely related nitrilase.

We also studied integrons in halophiles and hypersaline environments. Integrons are genetic platforms in which an integron integrase (IntI) mediates the excision and integration of gene cassettes at specific recombination sites. In order to search for integrons in halophiles and hypersaline metagenomes, we used a PCR-based approach, in addition to different bioinformatics tools, mainly IntegronFinder.

We found that integrons and …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Molecular Dynamics Simulations Provide Insight Into Stability Of Hyperthermophilic Endoglucanases, Logan E. Sheffield Jun 2021

Molecular Dynamics Simulations Provide Insight Into Stability Of Hyperthermophilic Endoglucanases, Logan E. Sheffield

Electronic Theses and Dissertations

Endoglucanases play a key role in the industrial production of bioethanol, but the most efficient method requires the utilization of high temperatures and is currently limited by the thermostability of endoglucanases. For this reason, it would be beneficial to discover more high-efficiency, thermostable enzymes to utilize in the hydrolytic process. In this study molecular dynamics simulations were performed on structurally similar endoglucanases with varying levels of thermostability to gain insight on what factors contribute to thermostability in endoglucanases. RMSD, RMSF, PCA, hydrogen bonding and salt bridges were analyzed. Finally, protein energy networks were constructed from nonbonded interaction potentials and analysis …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Development Of Fluorescence Microscopy Approaches To Study Subcellular Protein Transport And Enzymatic Activity, Anchal Singh Jan 2021

Development Of Fluorescence Microscopy Approaches To Study Subcellular Protein Transport And Enzymatic Activity, Anchal Singh

Masters Theses

Understanding the subcellular localization of proteins and their activity is important in understanding their normal function in eukaryotic cells. Fluorescence cellular imaging techniques can selectively and sensitively visualize subcellular biochemistry. Using this approach, two different methods were employed in this thesis. The first focused on studying protein import into peroxisome and the other on monitoring the activity of an endoplasmic reticulum (ER)-localized enzyme, human carboxylesterase 1 (CES1).

Peroxisomes are mainly known as the center for long chain fatty acid b-oxidation as well as the production and detoxification of hydrogen peroxide. Proteins which are needed in the peroxisomes are encoded in …


Applications Of Machine Learning In Microbial Forensics, Ryan B. Ghannam Jan 2021

Applications Of Machine Learning In Microbial Forensics, Ryan B. Ghannam

Dissertations, Master's Theses and Master's Reports

Microbial ecosystems are complex, with hundreds of members interacting with each other and the environment. The intricate and hidden behaviors underlying these interactions make research questions challenging – but can be better understood through machine learning. However, most machine learning that is used in microbiome work is a black box form of investigation, where accurate predictions can be made, but the inner logic behind what is driving prediction is hidden behind nontransparent layers of complexity.

Accordingly, the goal of this dissertation is to provide an interpretable and in-depth machine learning approach to investigate microbial biogeography and to use micro-organisms as …