Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 1197

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney Jun 2024

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney

Dissertations, Theses, and Capstone Projects

The last half century has played witness to the onset of molecular imaging for the clinical assessment of physiological targets. While several medical imaging modalities allow for the visualization of the functional and anatomical properties of humans and living systems, few offer accurate quantitation and the ability to detect biochemical processes with low-administered drug mass doses. This limits how physicians and scientists may diagnose and treat medical issues, such as cancer, disease, and foreign agents.

A promising alternative to extant invasive procedures and suboptimal imaging modalities to assess the nature of a biological environment is the use of positron emission …


Multi-Scale Simulations Of Dynamic Protein Structures And Interactions, Yumeng Zhang Mar 2024

Multi-Scale Simulations Of Dynamic Protein Structures And Interactions, Yumeng Zhang

Doctoral Dissertations

Intrinsically disordered proteins (IDPs) are functional proteins that lack stable tertiary structures in the unbound state. They frequently remain dynamic even within specific complexes and assemblies. IDPs are major components of cellular regulatory networks and have been associated with cancers, diabetes, neurodegenerative diseases, and other human diseases. Computer simulations are essential for deriving a molecular description of the disordered protein ensembles and dynamic interactions for mechanistic understanding of IDPs in biology, diseases, and therapeutics. However, accurate simulation of the heterogeneous ensembles and dynamic interactions of IDPs is extremely challenging because of both the prohibitive computational cost and demanding force field …


High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun Mar 2024

Development Of An Integrated Workflow For Nucleosome Modeling And Simulations, Ran Sun

Doctoral Dissertations

Nucleosomes are the building blocks of eukaryotic genomes and thus fundamental to to all genetic processes. Any protein or drug that binds DNA must either cooperate or compete with nucleosomes. Given that a nucleosome contains 147 base pairs of DNA, there are approximately 4^147 or 10^88 possible sequences for a single nucleosome. Exhaustive studies are not possible. However, genome wide association studies can identify individual nucleosomes of interest to a specific mechanism, and today's supercomputers enable comparative simulation studies of 10s to 100s of nucleosomes. The goal of this thesis is to develop and present and end-to-end workflow that serves …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


C. Compactum Acts As A Comprehensive Climate Archive And Ecological Foundation In The Labrador Sea, Sadie Heckman Jan 2024

C. Compactum Acts As A Comprehensive Climate Archive And Ecological Foundation In The Labrador Sea, Sadie Heckman

CMC Senior Theses

Clathromorphum compactum, a species of crustose coralline algae (CCA), is incredibly valuable for the future of high latitude ocean health, both as a comprehensive archive of changing ocean conditions, and ecologically as a foundational species for promoting biodiversity. Previous work establishes C. compactum as an effective climate proxy, and its life history provides several advantages for this use. C. compactum grow in nongeniculate, generally radial formations on hard substrates, over a wide distribution in mid-to-high latitude oceans and at subtidal depth ranges. Indeterminate growth leads to extreme longevity in C. compactum (Halfar et al., 2008), and growth rates are relatively …


Biophysical Factors Affecting Habitat Suitability For Crassostrea Virginica, Jason D. Tilley Dec 2023

Biophysical Factors Affecting Habitat Suitability For Crassostrea Virginica, Jason D. Tilley

Dissertations

Oyster reefs provide a variety of important ecosystem services. However, the mortality rate of eastern oyster, Crassostrea virginica, the dominant species that produces oyster reefs in the northern Gulf of Mexico, is increasing at an alarming rate due to a variety of abiotic and biological factors. I examined how biophysical factors, including the less-studied fatty acid profiles of the suspended particulate matter on which oysters feed, influenced morphometric condition of C. virginica.

I sampled suspended particulate matter (SPM) and oysters in-situ in the western Mississippi Sound, which historically supported the majority of oyster production in Mississippi waters. Sampling …


Biomolecular Function From Structural Snapshots, Roshanak Etemadpour Dec 2023

Biomolecular Function From Structural Snapshots, Roshanak Etemadpour

Theses and Dissertations

Biological molecules can assume a continuous range of conformations during function. Near equilibrium, the Boltzmann relation connects a particular conformation's free energy to the conformation's occupation probability, thus giving rise to one or more energy landscapes. Biomolecular function proceeds along minimum-energy pathways on such landscapes. Consequently, a comprehensive understanding of biomolecular function often involves the determination of the free-energy landscapes and the identification of functionally relevant minimum-energy conformational paths on these landscapes. Specific techniques are necessary to determine continuous conformational spectra and identify functionally relevant conformational trajectories from a collection of raw single-particle snapshots from, e.g. cryogenic electron microscopy (cryo-EM) …


The Discovery Of Diverse Picophytoplankton Populations In The Columbia And Willamette Rivers Using Flow Cytometry, Kylee Brevick Dec 2023

The Discovery Of Diverse Picophytoplankton Populations In The Columbia And Willamette Rivers Using Flow Cytometry, Kylee Brevick

Chemistry Undergraduate Departmental Honors Theses

As important primary producers, picophytoplankton determine the flow of carbon and energy in aquatic ecosystems. Picocyanobacteria are one picophytoplankton group known to be dominant in oceans and lakes, but they are still poorly understood in river systems. This project examined picophytoplankton communities in two distinct river systems: the Columbia and Willamette Rivers in Portland, Oregon. I aimed to characterize and quantify the picophytoplankton populations in the context of the environmental conditions of the two rivers. I used flow cytometry to detect cells based on their relative size and pigment fluorescence. I sampled nearly weekly for ten months to capture population …


Synthesis Of Bacterial Glycerophospholipids For Biomembrane Model Studies: A Means To Advanced Biofuels, Felix Adulley Dec 2023

Synthesis Of Bacterial Glycerophospholipids For Biomembrane Model Studies: A Means To Advanced Biofuels, Felix Adulley

Electronic Theses and Dissertations

To reduce reliance on fossil fuels, sustainable biofuels are being pursued, especially advanced biofuels like 1-butanol that have higher energy content and greater compatibility with existing infrastructure than ethanol. A persistent challenge is the yield-limiting toxicity of biofuels and process solvents, such as tetrahydrofuran, to the microbes that ferment biomass into biofuel. The cell membrane is a focal point of toxicity, and understanding how it interacts with fuels and solvents is key to improving yield. Phospholipid bilayers are the core of biomembranes, and model biomembranes of defined composition provide the ideal platform for biophysical studies. To this end, glycerophospholipids characteristic …


Integration Of Algae And Biomass Processes To Synthesize Renewable Bioproducts For The Circular Economy, Jessica Martin Nov 2023

Integration Of Algae And Biomass Processes To Synthesize Renewable Bioproducts For The Circular Economy, Jessica Martin

USF Tampa Graduate Theses and Dissertations

Rapid population growth and global industrialization have substantially heightened the demand for fossil-based fuels and products in various sectors of the global economy, including energy production, transportation fuels, and as raw materials for petrochemicals. The intense consumption of fossil fuels has caused immense environmental impacts, especially pertaining to carbon dioxide emissions. Shifting to renewable feedstocks (raw materials) is expected to reduce these emissions by lowering the carbon footprint of fuels and products compared to traditional fossil-derived alternatives. This transition aligns with the goal of creating a sustainable and circular economy, emphasizing efficient resource use, and reducing waste generation through recycling …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Atomistic Simulations Of Intrinsically Disordered Protein Folding And Dynamics, Xiping Gong Nov 2023

Atomistic Simulations Of Intrinsically Disordered Protein Folding And Dynamics, Xiping Gong

Doctoral Dissertations

Intrinsically disordered proteins (IDPs) are crucial in biology and human diseases, necessitating a comprehensive understanding of their structure, dynamics, and interactions. Atomistic simulations have emerged as a key tool for unraveling the molecular intricacies and establishing mechanistic insights into how these proteins facilitate diverse biological functions. However, achieving accurate simulations requires both an appropriate protein force field capable of describing the energy landscape of functionally relevant IDP conformations and sufficient conformational sampling to capture the free energy landscape of IDP dynamics. These factors are fundamental in comprehending potential IDP structures, dynamics, and interactions. I first conducted explicit solvent simulations to …


Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Short-Term Versus Long-Term Effects Of Nitrogen Addition And Warming On Ecosystem N Dynamics In A Grass-Dominated Temperate Old Field, Benjamin F. A. Souriol Oct 2023

Short-Term Versus Long-Term Effects Of Nitrogen Addition And Warming On Ecosystem N Dynamics In A Grass-Dominated Temperate Old Field, Benjamin F. A. Souriol

Electronic Thesis and Dissertation Repository

Increased atmospheric nitrogen (N) deposition and climate warming are both anticipated to influence the ecosystem N dynamics of northern temperate ecosystems substantially over the next century. Nevertheless, in field experiments with N addition and warming treatments, temporal scale can play an important role in determining the extent of treatment effects on N dynamics, and it is unclear to what extent the results of short-term studies can be extrapolated to responses over longer time scales. I compared the short-term versus long-term effects of N addition and warming on net N mineralization, N leaching, and N retention in a grass-dominated old field. …


Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut Oct 2023

Structural Insights Into The Cl-Par-4 Protein: Ionic Requirements, Conformational Transitions, And Interaction With Cisplatin, Krishna Kumar Raut

Chemistry & Biochemistry Theses & Dissertations

Cancer continues to be the leading global cause of death, with challenges in early diagnosis, drug resistance, non-specific drug targeting, and cancer recurrence and metastasis posing formidable obstacles in cancer therapy. In this context, Prostate Apoptosis Response-4 (Par-4), a pro-apoptotic tumor suppressor protein, emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells, thereby minimizing the drug-associated adverse effects. However, a comprehensive understanding of the structural features of Par-4, specifically the caspase-cleaved fragment (cl-Par-4), is crucial for therapeutic advancements.

This dissertation investigated the effects of various ions, both monovalent and divalent, on the …


Fundamental Study Of Ionic Liquid Physicochemical Effects On Thermal Stability Of Model Biological Macromolecules, Austin Keith Clark Sep 2023

Fundamental Study Of Ionic Liquid Physicochemical Effects On Thermal Stability Of Model Biological Macromolecules, Austin Keith Clark

Theses and Dissertations

Ionic Liquids (ILs) are substances with a unique physical attribute compared to that of solid ionic salts. At room temperature, ILs are molten salts that have a variety of physical effects that can play a role in their impact on other molecules, as solvents or solutes. They can play the role of the solvent in a variety of applications, from biofuels to organic catalysis or as excipients in pharmaceutical formulations. These ILs have a desirable use as solvents due to their ability to be tunable substances. Changing the cation or anion of the IL causes a change in its physical …


Protein Stability In Solution And In The Gas Phase., Yousef Haidar Sep 2023

Protein Stability In Solution And In The Gas Phase., Yousef Haidar

Electronic Thesis and Dissertation Repository

Electrospray Ionization mass spectrometry (ESI-MS) is widely used for probing proteins, yet many aspects of this technique remain elusive. Using MS, ion mobility spectrometry (IMS), and circular dichroism (CD) spectroscopy, this thesis sheds light on the stability differences of proteins in the gas phase and solution. After a general introduction (Chapter 1), Chapter 2 scrutinizes some aspects of native ESI. Our data highlight the significance of cone voltage in maintaining a native-like fold and show the advantage of using NH4Ac in protein experiments. Chapter 3 focuses on hydrogen/deuterium exchange (HDX)-MS. Several studies have reported that D2O …


Development Of Antiviral Peptidomimetics, Songyi Xue Sep 2023

Development Of Antiviral Peptidomimetics, Songyi Xue

USF Tampa Graduate Theses and Dissertations

Protein-protein interactions (PPIs) are essential for biological processes and are associated with a number of diseases, including cancer, infectious diseases, and neurodegenerative diseases. As a result, modulation of PPIs has been recognized as one of the most promising strategies to develop the novel drugs. Peptide modulators always exhibit higher specificity and affinities with targets than small compounds or monoclonal antibodies, but their broad medicinal effectiveness is constrained by their poor bioavailability and biostability. Peptidomimetics, which have been developed to mimic the structure as well as function of bioactive peptides and proteins, have shown excellent potential in protein surface mimicry and …


Optimization And Application Of Graph Neural Networks, Shuo Zhang Sep 2023

Optimization And Application Of Graph Neural Networks, Shuo Zhang

Dissertations, Theses, and Capstone Projects

Graph Neural Networks (GNNs) are widely recognized for their potential in learning from graph-structured data and solving complex problems. However, optimal performance and applicability of GNNs have been an open-ended challenge. This dissertation presents a series of substantial advances addressing this problem. First, we investigate attention-based GNNs, revealing a critical shortcoming: their ignorance of cardinality information that impacts their discriminative power. To rectify this, we propose Cardinality Preserved Attention (CPA) models that can be applied to any attention-based GNNs, which exhibit a marked improvement in performance. Next, we introduce the Directional Node Pair (DNP) descriptor and the Robust Molecular Graph …


Out-Of-Distribution Generalization Of Deep Learning To Illuminate Dark Protein Functional Space, Tian Cai Sep 2023

Out-Of-Distribution Generalization Of Deep Learning To Illuminate Dark Protein Functional Space, Tian Cai

Dissertations, Theses, and Capstone Projects

Dark protein illumination is a fundamental challenge in drug discovery where majority human proteins are understudied, i.e. with only known protein sequence but no known small molecule binder. It's a major road block to enable drug discovery paradigm shift from single-targeted which looks to identify a single target and design drug to regulate the single target to multi-targeted in a Systems Pharmacology perspective. Diseases such as Alzheimer's and Opioid-Use-Disorder plaguing millions of patients call for effective multi-targeted approach involving dark proteins. Using limited protein data to predict dark protein property requires deep learning systems with OOD generalization capacity. Out-of-Distribution (OOD) …


Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali Aug 2023

Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali

Dissertations

Proteins play a critical role in living systems by performing most of the functions inside cells. The latter is determined by the protein's three-dimensional structure when it is folded in its native state. However, under pathological conditions, proteins can misfold and aggregate, accounting for the formation of highly ordered insoluble assemblies known as amyloid fibrils. These assemblies are associated with diseases like Parkinson's and Alzheimer's. Strong evidence suggests that three mechanisms are critical for forming amyloid fibrils. These mechanisms are the nucleation of amyloid fibrils in solution (primary nucleation) as well as on the surface of existing fibrils (secondary nucleation) …


Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


A Quantitative Visualization Tool For The Assessment Of Mammographic Risky Dense Tissue Types, Margaret R. Mccarthy Aug 2023

A Quantitative Visualization Tool For The Assessment Of Mammographic Risky Dense Tissue Types, Margaret R. Mccarthy

Electronic Theses and Dissertations

Breast cancer is the second most occurring cancer type and is ranked fifth in terms of mortality. X-ray mammography is the most common methodology of breast imaging and can show radiographic signs of cancer, such as masses and calcifcations. From these mammograms, radiologists can also assess breast density, which is a known cancer risk factor. However, since not all dense tissue is cancer-prone, we hypothesize that dense tissue can be segregated into healthy vs. risky subtypes. We propose that risky dense tissue is associated with tissue microenvironment disorganization, which can be quantified via a computational characterization of the whole breast …


Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza Aug 2023

Towards Clinical Microscopic Fractional Anisotropy Imaging, Nico Jj Arezza

Electronic Thesis and Dissertation Repository

Microscopic fractional anisotropy (µFA) is a diffusion-weighted magnetic resonance imaging (dMRI) metric that is sensitive to neuron microstructural features without being confounded by the orientation dispersion of axons and dendrites. µFA may potentially act as a surrogate biomarker for neurodegeneration, demyelination, and other pathological changes to neuron microstructure with greater specificity than other dMRI techniques that are sensitive to orientation dispersion, such as diffusion tensor imaging. As with many advanced imaging techniques, µFA is primarily used in research studies and has not seen use in clinical settings.

The primary goal of this Thesis was to assess the clinical viability of …


Solving The Cable Equation, A Second-Order Time Dependent Pde For Non-Ideal Cables With Action Potentials In The Mammalian Brain Using Kss Methods, Nirmohi Charbe Jun 2023

Solving The Cable Equation, A Second-Order Time Dependent Pde For Non-Ideal Cables With Action Potentials In The Mammalian Brain Using Kss Methods, Nirmohi Charbe

Master's Theses

In this thesis we shall perform the comparisons of a Krylov Subspace Spectral method with Forward Euler, Backward Euler and Crank-Nicolson to solve the Cable Equation. The Cable Equation measures action potentials in axons in a mammalian brain treated as an ideal cable in the first part of the study. We shall subject this problem to the further assumption of a non-ideal cable. Assume a non-uniform cross section area along the longitudinal axis. At the present time, the effects of torsion, curvature and material capacitance are ignored. There is particular interest to generalize the application of the PDEs including and …


Investigating The Activity Of Alternative Warheads For Targeted Covalent Inhibition Of The Inhibitor Vertebrate Lysozyme Protein From Pseudomonas Aeruginosa, Katie Hambrick Jun 2023

Investigating The Activity Of Alternative Warheads For Targeted Covalent Inhibition Of The Inhibitor Vertebrate Lysozyme Protein From Pseudomonas Aeruginosa, Katie Hambrick

Master of Science in Chemical Sciences Theses

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative bacterium that causes blood and lung infections in hospital environments due to its ability to survive on improperly sterilized medical equipment. P. aeruginosa has developed several multi-drug resistance mechanisms that make it very difficult to treat with current antibiotics.1 This presents the need for a new class of antibiotics that cannot be overcome by P. aeruginosa’s mechanisms of resistance.

The primary goal of this project was to develop a small library of inhibitors that could later be incorporated into lead compounds for novel antibiotic drug discovery. One of P. …


Chemical And Genetic Composition Analysis Of Organic And Nonorganic Tortilla Chips, Aubrey White-Day Jun 2023

Chemical And Genetic Composition Analysis Of Organic And Nonorganic Tortilla Chips, Aubrey White-Day

Honors Theses

The aim of this study was to explore the chemical and genetic differences between organic and nonorganic tortilla chips using GC-MS and PCR. Twenty chip brands were selected: 10 organic and 10 nonorganic. A survey on shopping preferences was created and distributed to compare results of public opinion to experimental data. It yielded 212 responses. All organic chip brands, and one out of ten nonorganic chip brands, tested negative for GMOs. This study concluded that there are minimal chemical differences based on Jaccard similarity indicies and stark genetic differences between organic and nonorganic tortilla chips. In comparing statistical analyses to …


The Development Of Novel Radioimmunoconjugates For The Pet Imaging And Radioimmunotherapy Of Cancer, Samantha M. Sarrett Jun 2023

The Development Of Novel Radioimmunoconjugates For The Pet Imaging And Radioimmunotherapy Of Cancer, Samantha M. Sarrett

Dissertations, Theses, and Capstone Projects

Antibodies have long played a vital role in nuclear medicine for both the diagnosis and therapy of various malignancies. The role and development of antibodies in nuclear medicine can be broadly separated into three different categories: 1) bioconjugation strategies, 2) immunoPET imaging, and 3) radioimmunotherapy. This dissertation will attempt to comprehensively cover each of these categories through a series of studies, protocols, and reviews. For the bioconjugation strategies, we will describe the development of a novel site-selective bioconjugation strategy using an innovative lysine-targeting reagent, PFP-bisN3, to prepare [89Zr]Zr-SSKDFO-pertuzumab for visualizing HER2+ breast cancer. Further, …