Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Biomimetic Synthesis Of Palladium Nanoparticles For Catalytic Application, Emily A. Groover Jan 2022

Biomimetic Synthesis Of Palladium Nanoparticles For Catalytic Application, Emily A. Groover

Electronic Theses and Dissertations

The synthesis of palladium nanoparticles (Pd NPs) using materials-directed peptides is a novel, nontoxic approach which exerts a high level of control over the particle size and shape. This biomimetic technique is environmentally benign, featuring nonhazardous ligands and ambient conditions. Nanoparticles are extremely reactive catalysts, boasting a large surface-to-volume ratio when compared to their bulk counterparts. The rational design of these nanoparticles using peptides has been very successful in aqueous environments, but no research has been done to apply it in organic systems. As such, the biomimetic synthesis of Pd NPs in an organic system is here investigated, with ethanol …


Characterization Of Ph – Responsive Nanocage Based On The Ferritin Iron Storage Protein, Satyam Singh Jul 2021

Characterization Of Ph – Responsive Nanocage Based On The Ferritin Iron Storage Protein, Satyam Singh

Theses and Dissertations

The iron-storage protein ferritin (Ftn) assembles into a protein cage structure with 24 subunits and octahedral (4-fold, 3-fold, 2-fold) symmetry. Each monomeric subunit contains a robust four-helix bundle fold. The fully assembled Ftn structure has a high degree of thermal stability (up to 100°C), a mono dispersed size (12 nm in diameter), and a large central cavity (7-8 nm in diameter). The central cavity stores ferric iron in phylogenetically diverse group of organisms, including humans. The central cavity has been used for encapsulation of cargoes such as other metals, contrast agents for imaging, small molecule drugs for therapy, …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora Dec 2020

Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora

Doctoral Dissertations

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical applications, such as therapeutic delivery, due to their unique chemical properties and modular tunability. Mass spectrometry methods, including laser desorption/ionization mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) have been successfully used to evaluate the distribution of AuNPs in complex biological systems. As new AuNP-based materials are developed for applications in therapeutic delivery, it is essential to simultaneously develop analytical techniques that can comprehensively assess their behavior in vivo. In this dissertation, novel mass spectrometric methods have been developed and utilized to evaluate the uptake, distribution, …


Determination Of Optimal Mild Organic Solvents Of Pdnps For Carbon-Carbon Coupling Reactions, Trina Biswas Dec 2019

Determination Of Optimal Mild Organic Solvents Of Pdnps For Carbon-Carbon Coupling Reactions, Trina Biswas

Honors College Theses

The synthesis of nanoparticles is an increasingly popular field of interest. The application of nanoparticles is especially popular in the field of nanocatalysts. Metal nanoparticles (NPs) are favorable for catalysis because of the large surface area to volume ratio, which allows them to catalyze a variety of reactions using lesser amounts of active material. As the field of nanoparticle research expands, efforts are being made to create more sustainable approaches to the synthesis of these particles. This research sought to translate the benefits of peptide-based synthesis to organic solvents and use less toxic organic solvents for carbon-carbon coupling reactions, like …


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese May 2019

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered …


Development And Application Of New Solid-State Models For Low-Energy Vibrations, Lattice Defects, Entropies Of Mixing, And Magnetic Properties, Jacob M. Schliesser Mar 2016

Development And Application Of New Solid-State Models For Low-Energy Vibrations, Lattice Defects, Entropies Of Mixing, And Magnetic Properties, Jacob M. Schliesser

Theses and Dissertations

Low-temperature heat capacity data contain information on the physical properties of materials, and new models continue to be developed to aid in the analysis and interpretation of heat capacity data into physically meaningful properties. This work presents the development of two such models and their application to real material systems. Equations describing low-energy vibrational modes with a gap in the density of states (DOS) have been derived and tested on several material systems with known gaps in the DOS, and the origins of such gaps in the DOS are presented. Lattice vacancies have been shown to produce a two-level system …


Formation And Analysis Of Zinc Oxide Nanoparticles And Zinc Oxide Hexagonal Prisms And Optical Analysis Of Cadmium Selenide Nanoparticles, Jared M. Hancock Dec 2013

Formation And Analysis Of Zinc Oxide Nanoparticles And Zinc Oxide Hexagonal Prisms And Optical Analysis Of Cadmium Selenide Nanoparticles, Jared M. Hancock

Theses and Dissertations

In this dissertation, methods to synthesize ZnO are reported. First, zinc oxide nanoparticles were synthesized with small amounts of transition metal ions to create materials called dilute magnetic semiconductors (DMS). We employed a low temperature sol-gel method that produces ZnO nanoparticles of reproducible size and incorporates cobalt, nickel, and manganese ions into the nanoparticles. Conditions were controlled such that a range of amounts of Co, Ni, and Mn were incorporated. The incorporation was tracked by color changes in the white ZnO powder to blue for Co, green for Ni and yellow for Mn. XRD measurements showed the nanoparticles were on …


Size-Based Separation Of Bioparticles Using Planar Nanofluidic Devices, Jie Xuan Sep 2013

Size-Based Separation Of Bioparticles Using Planar Nanofluidic Devices, Jie Xuan

Theses and Dissertations

Nanofluidic devices are structures having at least one dimension in the submicron range, which is of the same order of magnitude as the sizes of biomolecules and bioparticles such as proteins and viruses. As a result, size-selective separations are important applications for nanofluidics. Well-defined micro or nano device structures fabricated via micromachining have greatly reduced sample consumption and enabled separations in a parallel fashion, promising significant speed and resolution advantages over conventional size separation techniques, such as gel electrophoresis and size exclusion chromatography. In collaboration with others, I have developed a size separation method using nanofluidic devices consisting of an …


The Synthesis And Structural Characterization Of Metal Oxide Nanoparticles Having Catalytic Applications, Stacey Janel Smith Jul 2012

The Synthesis And Structural Characterization Of Metal Oxide Nanoparticles Having Catalytic Applications, Stacey Janel Smith

Theses and Dissertations

Nanotechnology is blossoming into one of the premiere technologies of this century, but the key to its progress lies in developing more efficient nanosynthesis methods. Variations in synthetic technique, however, can cause variations in size, structure, and surface characteristics, thereby altering the physical properties and functionality of the particles. Careful structural characterizations are thus essential for understanding the properties and appropriate applications for particles produced by new synthetic techniques.In this work, a new ‘solvent-deficient’ method is presented for the synthesis of an unprecedentedly wide range of metal oxide nanomaterials including at least one metal oxide from each group in Groups …


Dna-Templated Nanomaterials, Hector Alejandro Becerril-Garcia Apr 2007

Dna-Templated Nanomaterials, Hector Alejandro Becerril-Garcia

Theses and Dissertations

Nanomaterials display interesting physical and chemical properties depending on their shape, size and composition. Self assembly is an intriguing route to producing nanomaterials with controllable compositions and morphologies. DNA has been used to guide the self assembly of materials, resulting in: (1) metal nanowires; (2) metal or semiconductor nanorods; (3) carbon nanotubes; and (4) semiconductor, metal or biological nanoparticles. My work expands the range of DNA templated nanomaterials and develops novel ways of using DNA to pattern nanostructures on surfaces. I have performed the first synthesis of silver nanorods on single stranded DNA, an attractive material for localizing DNA coupled …