Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck Jan 2022

Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck

Theses and Dissertations--Pharmacy

In the U.S., anxiety is recognized as an increasing range of mentally and physically debilitating psychiatric health disorders with significant economic repercussions. Over the last 20 years, several novel anti-anxiety therapies have entered the drug development pipeline, but none have made it to market.

The work in this dissertation focused on structurally modifying valerenic acid (VA), a structurally unique carboxylated sesquiterpene acid found in Valeriana officinalis. VA is putatively reported to have allosteric modulatory activity of the human GABAA receptor, a ligand-gated ion channel responsible for attenuating neurotransmissions. Structural modeling of VA’s GABAA receptor interaction suggests that …


The Role Of Charge On Dna Packaging And Integrity Within Reconstituted Peptide-Dna Assemblies, Ehigbai Oikeh Jan 2022

The Role Of Charge On Dna Packaging And Integrity Within Reconstituted Peptide-Dna Assemblies, Ehigbai Oikeh

Theses and Dissertations--Chemistry

In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins; histone in somatic nuclei and arginine-rich peptides called protamines in sperm chromatin. The packaging in the sperm nucleus is significantly higher than somatic nuclei resulting in a final volume roughly 1/20th that of a somatic nucleus. This tight packaging results in a near crystalline packaging of the DNA helices. While the dense packaging of DNA in sperm nuclei is considered essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species, …


Synthesis Of 6,6- And 7,7-Difluoro-1-Acetamidopyrrolizidines And Their Oxidation Catalyzed By The Nonheme Fe Oxygenase Lolo, Nabin Panth Jan 2022

Synthesis Of 6,6- And 7,7-Difluoro-1-Acetamidopyrrolizidines And Their Oxidation Catalyzed By The Nonheme Fe Oxygenase Lolo, Nabin Panth

Theses and Dissertations--Chemistry

One of the remarkable steps in loline alkaloid biosynthesis is the installation of an ether bridge between two unactivated C atoms in 1-exo-acetamidopyrrolizidine (AcAP). LolO, a 2-oxoglutarate-dependent nonheme Fe oxygenase, catalyzes both the hydroxylation of AcAP and the resulting alcohol's cycloetherification to give N-acetylnornoline (NANL). The mechanism of hydroxylation is well understood, but the mechanism of the oxacyclization is not. I synthesized difluorinated analogs of AcAP in an attempt to further understand the mechanism of the unusual cycloetherification step.

I prepared 6,6-F2-AcAP in eight steps from N,O-protected 4-oxoproline. The key step was a Dieckmann …


Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal Jan 2022

Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal

Theses and Dissertations--Chemistry

Smoking and tobacco use (STU) is a major global health problem and worldwide more than six million people die due to tobacco related diseases each year. Although majority of smokers try to quit smoking several times in their life, traditional therapeutic approaches, which focus only on neuronal cells, have a very low success rate. Understanding the effect of nicotine on glial cells, synaptic communication and blood vasculature in the brain can provide further insights on the neurobiology of substance abuse and can potentially help to design better therapeutic approaches. Glial cells are non-excitable cells in the brain which do not …


Machine Learning And Bioinformatic Insights Into Key Enzymes For A Bio-Based Circular Economy, Japheth E. Gado Jan 2021

Machine Learning And Bioinformatic Insights Into Key Enzymes For A Bio-Based Circular Economy, Japheth E. Gado

Theses and Dissertations--Chemical and Materials Engineering

The world is presently faced with a sustainability crisis; it is becoming increasingly difficult to meet the energy and material needs of a growing global population without depleting and polluting our planet. Greenhouse gases released from the continuous combustion of fossil fuels engender accelerated climate change, and plastic waste accumulates in the environment. There is need for a circular economy, where energy and materials are renewably derived from waste items, rather than by consuming limited resources. Deconstruction of the recalcitrant linkages in natural and synthetic polymers is crucial for a circular economy, as deconstructed monomers can be used to manufacture …


Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens Jan 2021

Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens

Theses and Dissertations--Chemistry

Development of stable gold-based complexes has been a rapidly advancing field due to the popularity of gold complexes, particularly for use in biomedical research and catalytic transformations. Given that auranofin, a gold(I) complex with FDA approval for the treatment of rheumatoid arthritis is used in the clinic, the development of stable gold-based molecules of clinical relevance is urgently needed. Herein are reported, synthetic strategies used for the development of new classes of gold(I) and gold(III) complexes for advancement in mitochondrial modulation for use as chemotherapeutics as well as application to gold catalysis due to the unique geometry of complexes presented …


Computational Insights On Medicinal Chemistry Targeting Cyp450s, Alexander D. Fenton Jan 2021

Computational Insights On Medicinal Chemistry Targeting Cyp450s, Alexander D. Fenton

Theses and Dissertations--Chemistry

Modern-day medicinal chemistry has provided researchers with a wide variety of tools to not only gather greater insight from their data, but also to generate data in new ways. One such tool is the construction of computational protein models from crystallographic datasets, and their subsequent use to understand the structure-activity relationships of protein-ligand complexes. These models can be utilized for their predictive power to inform the synthesis of, and improvement of, lead compounds. It is the goal of this work to employ such models to the CYP450 enzyme system such that potent and selective inhibitors can be designed, evaluated biologically, …


Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha Jan 2021

Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha

Theses and Dissertations--Chemistry

The Resistant Nodulation Division (RND) super family member, tripartite AcrA-AcrB-TolC efflux pump, is a major contributor in conferring multidrug-resistance in Escherichia coli. The structure of the pump complex, and drug translocation by functional rotation mechanism have been widely studied. Despite of all these data, the dynamics of the assembly process of the pump and AcrB during functional rotation in the process of drug efflux remains poorly understood. My thesis focuses on understanding the pump assembly process, dynamics of AcrB in functional rotation mechanism, and also investigate the mechanism of degradation of AcrB facilitated by a C-terminal ssrA tag.

In the …


Flavin Modification And Redox Tuning In The Bifurcating Electron Transfer Flavoprotein From Rhodopseudomonas Palustris: Two Arginines With Different Roles, Nishya Mohamed-Raseek Jan 2021

Flavin Modification And Redox Tuning In The Bifurcating Electron Transfer Flavoprotein From Rhodopseudomonas Palustris: Two Arginines With Different Roles, Nishya Mohamed-Raseek

Theses and Dissertations--Chemistry

Electron bifurcation is considered as a third fundamental mode of energy conservation mechanism in addition to two well-known mechanisms, substrate level phosphorylation and Oxidative phosphorylation, in electron bifurcation endergonic and exergonic redox reactions are coupled. The newly discovered flavin based electron bifurcation in electron transfer flavoproteins (ETFs) helps to reduce low potential ferredoxin, which provides electrons to drive biologically demanding reactions such as atmospheric dinitrogen fixation in diazotroph and methane production in methanogens.

Current research demonstrates the capacity for electron bifurcation in the Rhodopseudomonas palustris ETF (RpalETF) system. RpalETF contains two chemically identical but functionally different FADs: …


A Biophysical Investigation Of Stability, Ligand Binding, And Iron State Of Cyp102a1, Catherine A. Denning-Jannace Jan 2020

A Biophysical Investigation Of Stability, Ligand Binding, And Iron State Of Cyp102a1, Catherine A. Denning-Jannace

Theses and Dissertations--Chemistry

Cytochrome P450s (CYPs) are cysteine ligated Fe-heme monooxygenases that are found in all domains of life. In mammals, they have a role in xenobiotic metabolism and steroid synthesis, making them a fundamental requirement for survival. In addition, their ability to perform a variety of chemical reactions on an array of substrates makes CYPs highly sought for biotechnical applications such as wastewater remediation, production of potential drug candidates, and creation of drug metabolites. By mutating specific amino acids, these enzymes can be engineered to change their substrate binding profiles and achieve stereo- and regio-specific chemistry. While these mutations are essential to …


Flavodoxin, The Hydrogen Atom Of Flavoproteins: A 19f Nmr Study Of Dynamics And Conformational Changes Utilizing Flavodoxin From Rhodopseudomonas Palustris, Taylor Varner Jan 2020

Flavodoxin, The Hydrogen Atom Of Flavoproteins: A 19f Nmr Study Of Dynamics And Conformational Changes Utilizing Flavodoxin From Rhodopseudomonas Palustris, Taylor Varner

Theses and Dissertations--Chemistry

Flavodoxin is a small, highly stable protein that contain a single FMN cofactor used to transfer single electrons at low potentials. The organism Rhodopseudomonas palustris contains a long-chain flavodoxin. Long-chain flavodoxins are characterized by a 20 amino acid loop that is proposed to allow interactions with partner proteins. We plan to utilize this protein as a model to build our repertoire with protein fluorination and fluorine NMR in flavoproteins. This tool kit will then be applied to the study of a partner protein of interest that is capable of performing electron bifurcation. We have incorporated m-fluoro tyrosine into flavodoxin and …


Deconvolution Tools For Extracting Insight From Challenging Two-Flavin Systems, Dallas Michael Bell Jan 2020

Deconvolution Tools For Extracting Insight From Challenging Two-Flavin Systems, Dallas Michael Bell

Theses and Dissertations--Chemistry

Flavoproteins have long been explored for their ubiquity among a number of metabolic and energetic reactions. The flavin cofactor has the inherent benefit of distinct spectral changes associated with redox transitions; however, the double-edged sword is incurred as these distinct signatures overlap and take up much of the UV-vis spectral range. Therefore, it is crucial to create a method to demarcate the expressed redox transitions for studying these systems. The first portion of these studies discusses the creation of a program that deduces spectra for redox transitions in a single-flavin containing model protein: flavodoxin. The latter portions discuss the application …


Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen Jan 2019

Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen

Theses and Dissertations--Molecular and Cellular Biochemistry

Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially of biomacromolecules such as proteins. However, due to the intrinsic properties of NMR experiments, results from the NMR instruments require a refencing step before the down-the-line analysis. Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR. There is no available method that can rereference carbon chemical shifts from protein NMR without secondary experimental information such as structure or resonance assignment.

To solve this problem, we …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Investigation Of Amyloid Β Oligomer Dissociation Mechanisms By Single Molecule Fluorescence Techniques, Hope Cook Abdalla Jan 2019

Investigation Of Amyloid Β Oligomer Dissociation Mechanisms By Single Molecule Fluorescence Techniques, Hope Cook Abdalla

Theses and Dissertations--Chemistry

Alzheimer’s disease (AD) is currently considered the most prevalent neurodegenerative disease and places a large financial burden on society as healthcare resources are limited and the disease does not have a cure. Alzheimer’s disease is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles; however current literature suggests Aβ oligomers are the main aggregating species leading to AD symptoms. Therefore, the underlying cause of Alzheimer’s, accumulation of amyloid beta, is currently being studied in hopes of developing treatment options. Our research aims at determining the mechanism and kinetics of Aβ oligomer dissociation into non-toxic monomers in the …


Protein Suppression Of Flavin Semiquinone As A Mechanistically Important Control Of Reactivity: A Study Comparing Flavoenzymes Which Differ In Redox Properties, Substrates, And Ability To Bifurcate Electrons, John Patrick Hoben Jan 2018

Protein Suppression Of Flavin Semiquinone As A Mechanistically Important Control Of Reactivity: A Study Comparing Flavoenzymes Which Differ In Redox Properties, Substrates, And Ability To Bifurcate Electrons, John Patrick Hoben

Theses and Dissertations--Chemistry

A growing number of flavoprotein systems have been observed to bifurcate pairs of electrons. Flavin-based electron bifurcation (FBEB) results in products with greater reducing power than that of the reactants with less reducing power. Highly reducing electrons at low reduction midpoint potential are required for life processes of both aerobic and anaerobic metabolic processes. For electron bifurcation to function, the semiquinone (SQ) redox intermediate needs to be destabilized in the protein to suppress its ability to trap electrons. This dissertation examines SQ suppression across a number of flavin systems for the purpose of better understanding the nature of SQ suppression …


Applications Of Cell-Derived Vesicles: From Single Molecule Studies To Drug Delivery, Faruk H. Moonschi Jan 2018

Applications Of Cell-Derived Vesicles: From Single Molecule Studies To Drug Delivery, Faruk H. Moonschi

Theses and Dissertations--Chemistry

Single molecule studies can provide information of biological molecules which otherwise is lost in ensemble studies. A wide variety of fluorescence-based techniques are utilized for single molecule studies. While these tools have been widely applied for imaging soluble proteins, single molecule studies of transmembrane proteins are much more complicated. A primary reason for this is that, unlike membrane proteins, soluble proteins can be easily isolated from the cellular environment. One approach to isolate membrane proteins into single molecule level involves a very low label expression of the protein in cells. However, cells generate background fluorescence leading to a very low …


Synthesis And Development Of Zwitterionic Pei (Zpei) For Optimized Delivery Of Nucleic Acids, Joseph Raleigh Duke Iii Jan 2017

Synthesis And Development Of Zwitterionic Pei (Zpei) For Optimized Delivery Of Nucleic Acids, Joseph Raleigh Duke Iii

Theses and Dissertations--Chemistry

Gene therapy holds promise for the treatment a wide range of diseases ranging from cystic fibrosis to cardiovascular disease to cancer. The need for safe and efficient gene delivery methods remains the primary barrier to human gene therapy. Non-viral vector materials, including polymers, can be designed to be biocompatible and non-immunogenic, but lack the efficiency to be clinically relevant. Gene therapy awaits the development of new materials that are both safe and efficient. Here, we have synthesized a series of modified zwitterionic polymers based on the common transfecting agent polyethylenimine (PEI). Using a variety of biochemical and biophysical methods we …


The Development Of Colorimetric Assays To Determine The Identity And Frequency Of Specific Nucleobases In Dna Oligomers, Elizabeth Marie Thomas Jan 2016

The Development Of Colorimetric Assays To Determine The Identity And Frequency Of Specific Nucleobases In Dna Oligomers, Elizabeth Marie Thomas

Theses and Dissertations--Chemistry

Colorimetric methods combined with color-changing chemical probes are widely used as simple yet effective tools for identifying and quantifying a wide variety of molecules in solution. For nucleic acids (DNA and RNA), perhaps the most commonly used colorimetric probe is potassium permanganate, which can be used to identify single-stranded pyrimidines (thymine and cytosine) in polymers. Unfortunately, permanganate is not an effective probe for identifying purines (adenine and guanine), especially in the presence of the more reactive pyrimidines. Therefore, robust methods for discriminating between the purines remain elusive, thereby creating a barrier toward developing more complex colorimetric applications. In this dissertation, …


Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen Jan 2015

Chemoenzymatic Studies To Enhance The Chemical Space Of Natural Products, Jhong-Min Chen

Theses and Dissertations--Pharmacy

Natural products provide some of the most potent anticancer agents and offer a template for new drug design or improvement with the advantage of an enormous chemical space. The overall goal of this thesis research is to enhance the chemical space of two natural products in order to generate novel drugs with better in vivo bioactivities than the original natural products.

Polycarcin V (PV) is a gilvocarcin-type antitumor agent with similar structure and comparable bioactivity with the principle compound of this group, gilvocarcin V (GV). Modest modifications of the polyketide-derived tetracyclic core of GV had been accomplished, but the most …


Natural Phenomena As Potential Influence On Social And Political Behavior: The Earth’S Magnetic Field, Jackie R. East Jan 2014

Natural Phenomena As Potential Influence On Social And Political Behavior: The Earth’S Magnetic Field, Jackie R. East

Theses and Dissertations--Political Science

Researchers use natural phenomena in a number of disciplines to help explain human behavioral outcomes. Research regarding the potential effects of magnetic fields on animal and human behavior indicates that fields could influence outcomes of interest to social scientists. Tests so far have been limited in scope. This work is a preliminary evaluation of whether the earth’s magnetic field influences human behavior it examines the baseline relationship exhibited between geomagnetic readings and a host of social and political outcomes. The emphasis on breadth of topical coverage in these statistical trials, rather than on depth of development for any one model, …


Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard Jan 2013

Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard

Theses and Dissertations--Pharmacy

The rapid increase in antibiotic resistance demands the identification of novel antibiotics with novel targets. One potential antibacterial target is the biosynthesis of peptidoglycan cell wall, which is both ubiquitous and necessary for bacterial survival. Both the caprazamycin-related compounds A-90289 and muraminomicin, as well as the capuramycin-related compounds A-503083 and A-102395 are potent inhibitors of the translocase I enzyme, one of the key enzymes required for cell wall biosynthesis. The caprazamycin-related compounds contain a core nonproteinogen b-hydroxy-a-amino acid referred to as 5’-C-glycyluridine (GlyU). Residing within the biosynthetic gene clusters of the aforementioned compounds is a shared open reading …


Bifunctional Bisphosphonates For Delivering Biomolecules To Bone, Jivan N. Yewle Jan 2012

Bifunctional Bisphosphonates For Delivering Biomolecules To Bone, Jivan N. Yewle

Theses and Dissertations--Chemistry

Active targeting with controlled delivery of therapeutic agents to bone is an ideal approach for treatment of several bone diseases. Since bisphosphonates (BPs) are known to have high affinity to bone mineral and are being widely used in treatment of osteoporosis, they are well-suited for drug targeting to bone. For this purpose, bifunctional hydrazine-bisphosphonates (HBPs) with spacers of various lengths and lipophilicity were synthesized and studied. Crystal growth inhibition assays demonstrated that the HBPs with shorter spacers bound more strongly to bone mineral, hydroxyapatite (HA), than did alendronate. HBPs were also demonstrated to be non-toxic to MC3T3-E1 pre-osteoblasts. The targeted …


Investigations Into Modulation Of Brain Oxidative Stress By Various Interventions, Jessica Lynn Harris Jan 2012

Investigations Into Modulation Of Brain Oxidative Stress By Various Interventions, Jessica Lynn Harris

Theses and Dissertations--Chemistry

In this thesis study we examined glycogen synthase kinase-3β (GSK-3β) and its effects over Nrf2 and Pin 1 as it relates to Alzheimer’s disease (AD). AD is a neurodegenerative disease characterized by a prolonged high oxidative environment. Transcription factor Nrf2 is vital in the brain’s defense against oxidative insults through its up-regulation of over 100 antioxidants. Depletion of the brain’s antioxidant defense system results in intolerance to an oxidative environment, contributing to the progression of AD. The regulatory Pin 1 protein promotes cellular homeostasis, and when down-regulated results in increased deposits of neurofibrillary tangles (NFTs) and amyloid-β (Aβ) plaques, the …


Fabrication And Characterization Of Mesoscale Protein Patterns Using Atomic Force Microscopy (Afm), Pei Gao Jan 2011

Fabrication And Characterization Of Mesoscale Protein Patterns Using Atomic Force Microscopy (Afm), Pei Gao

University of Kentucky Doctoral Dissertations

A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing.

As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It …


Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian Jan 2010

Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian

University of Kentucky Doctoral Dissertations

The integrity of an organism's genome depends on the fidelity of DNA replication and the efficiency of DNA repair. The DNA mismatch repair (MMR) system, which is highly conserved from prokaryotes to eukaryotes, plays an important role in maintaining genome stability by correcting base-base mismatches and insertion/deletion (ID) mispairs generated during DNA replication and other DNA transactions. Mismatch recognition is a critical step in MMR. Two mismatch recognition proteins, MutSα (MSH2-MSH6 heterodimer) and MutSβ (MSH2-MSH3 heterodimer), have been identified in eukaryotic cells. MutSα and MutSβ have partially overlapping functions, with MutSα recognizing primarily base-base mismatches and 1-2 nt ID mispairs …


Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons Jan 2010

Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons

University of Kentucky Doctoral Dissertations

The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment.

The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass …


15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui Jan 2010

15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui

University of Kentucky Doctoral Dissertations

Massey and Hemmerich proposed that the different reactivities displayed by different flavoenzymes could be achieved as a result of dominance of different flavin ring resonance structures in different binding sites. Thus, the FMN cofactor would engage in different reactions when it had different electronic structures. To test this proposal and understand how different protein sites could produce different flavin electronic structures, we are developing solid-state NMR as a means of characterizing the electronic state of the flavin ring, via the 15N chemical shift tensors of the ring N atoms. These provide information on the frontier orbitals. We propose that …


In Vivo Oxidative Stress In Alzheimer Disease Brain And A Mouse Model Thereof: Effects Of Lipid Asymmetry And The Single Methionine Residue Of Amyloid-Β Peptide, Miranda Lu Bader Lange Jan 2010

In Vivo Oxidative Stress In Alzheimer Disease Brain And A Mouse Model Thereof: Effects Of Lipid Asymmetry And The Single Methionine Residue Of Amyloid-Β Peptide, Miranda Lu Bader Lange

University of Kentucky Doctoral Dissertations

Studies presented in this dissertation were conducted to gain more insight into the role of phospholipid asymmetry and amyloid-β (Aβ)-induced oxidative stress in brain of subjects with amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD). AD is a largely sporadic, age-associated neurodegenerative disorder clinically characterized by the vast, progressive loss of memory and cognition commonly in populations over the age of ~65 years, with the exception of those with familial AD, which develop AD symptoms as early as ~30 years-old. Neuropathologically, both AD and FAD can be characterized by synapse and neuronal cell loss in conjunction with accumulation of …