Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Theses/Dissertations

2020

Institution
Keyword
Publication

Articles 1 - 30 of 79

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur Dec 2020

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur

Dissertations

The circadian rhythms arise as an adaptation to the environmental 24-hour day and night cycle due to Earth's rotation. These rhythms prepare organisms to align their internal biological activities and day to day behavior or events with the environmental change of the 24-hour day and night cycle. Circadian rhythms are found widely in all living kingdoms of life on Earth. Cyanobacteria are photosynthetic prokaryotes which first used to study these circadian rhythms. Among cyanobacterial species, Synechococcus elongatus PCC 7942 (henceforth, S. Elongatus) is the simplest organism with a durable and sturdy circadian clock and is study as a model organism. …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora Dec 2020

Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora

Doctoral Dissertations

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical applications, such as therapeutic delivery, due to their unique chemical properties and modular tunability. Mass spectrometry methods, including laser desorption/ionization mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) have been successfully used to evaluate the distribution of AuNPs in complex biological systems. As new AuNP-based materials are developed for applications in therapeutic delivery, it is essential to simultaneously develop analytical techniques that can comprehensively assess their behavior in vivo. In this dissertation, novel mass spectrometric methods have been developed and utilized to evaluate the uptake, distribution, …


Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace Dec 2020

Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace

Electronic Theses and Dissertations

Influenza virus, colloquially known as the flu, is an acute respiratory disease that infects several millions of individuals each year in the U.S. and kills tens of thousands of those infected. Yearly viral vaccines are widely available, however, due to the virus’s high mutation rate, their efficacy varies greatly. Due to the variability in vaccine efficiency against seasonal influenza, and the potential for even more pathogenic versions of influenza to emerge at any time, there is a high demand for a universal treatment option.

Influenza virus hijacks a variety of host cell components in order to replicate. The glycoprotein hemagglutinin …


Probing Structure, Function And Dynamics In Bacterial Primary And Secondary Transporter-Associated Binding Proteins, Shantanu Shukla Dec 2020

Probing Structure, Function And Dynamics In Bacterial Primary And Secondary Transporter-Associated Binding Proteins, Shantanu Shukla

Doctoral Dissertations

Substrate binding proteins (SBPs) are ubiquitous in all life forms and have evolved to perform diverse physiological functions, such as in membrane transport, gene regulation, neurotransmission, and quorum sensing. It is quite astounding to observe such functional diversity among the SBPs even when they are restricted by their fold space. Therefore, the SBPs are an excellent set of proteins that can reveal how proteins evolution novel function in a structurally conserved/constrained fold. This study attempts to understand the phenomenon of affinity and specificity evolution in SBPs by combining a set of biochemical, biophysical, and structural studies on the SBPs involved …


Development Of Computational Tools To Target Microrna, Luo Song Dec 2020

Development Of Computational Tools To Target Microrna, Luo Song

Dissertations & Theses (Open Access)

MicroRNAs (a.k.a, miRNAs) play an important role in disease development. However, few of their structures have been determined and structure-based computational methods remain challenging in accurately predicting their interactions with small molecules. To address this issue, my thesis is to develop integrated approaches to screening for novel inhibitors by targeting specific structure motifs in miRNAs. The project starts with implementing a tool to find potential miRNA targets with desired motifs. I combined both sequence information of miRNAs and known RNA structure data from Protein Data Bank (PDB) to predict the miRNA structure and identify the motif to target, then I …


Structural Characterization Of Two Large Icosahedral Dna Viruses And Their Capsid Assembly Mechanisms, Yuejiao Xian Dec 2020

Structural Characterization Of Two Large Icosahedral Dna Viruses And Their Capsid Assembly Mechanisms, Yuejiao Xian

Open Access Theses & Dissertations

In the last three decades, many large DNA viruses were discovered and grouped into a loosely defined clade of Nucleocytoplasmic Large DNA Viruses (NCLDVs). NCLDVs infect a wide range of hosts from single cellular protists to large animals. Recently, these viruses were classified as a new phylum of Nucleocytoviricota under the kingdom of Bamfordvirae. The genomes of these Nucleocytoviricota viruses (NCVs) are remarkedly large and complicated, containing many cellular genes from all three domains of life, which raised intensive debates on their evolutionary origins. Despite being classified in the same phylum, their physical structures vary and can be roughly classified …


Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller Dec 2020

Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller

Doctoral Dissertations

Understanding how small-molecules, such as drugs, interact with bacterial membranes can quickly unravel into much more perplexing questions. No two bacterial species are alike, especially when comparing their membrane compositions which can even be altered by incorporating fatty acids from their surrounding environment into their lipid-membrane composition. To further complicate the comparison, discrete alterations in small-molecule structures can result in vastly different membrane-interaction outcomes, giving rise to the need for more "label-free" studies when analyzing drug mechanisms. The work presented in this dissertation highlights the benefits to using nonlinear spectroscopy and microscopy techniques for probing small-molecule interactions in living bacteria. …


A Mechanistic Investigation Of Cytochrome C Nitrite Reductase Catalyzed Reduction Of Nitrite To Ammonia: The Search For Catalytic Intermediates, Shahid Shahid Dec 2020

A Mechanistic Investigation Of Cytochrome C Nitrite Reductase Catalyzed Reduction Of Nitrite To Ammonia: The Search For Catalytic Intermediates, Shahid Shahid

Theses and Dissertations

Cytochrome c Nitrite Reductase (ccNiR) is a periplasmic homodimeric decaheme enzyme that catalyzes the reduction of nitrite to ammonium in a process that involves six electrons and eight protons. Under standard assay conditions, which use a strong reducing agent as an electron source, catalysis takes place rapidly without producing detectable intermediates. However, intermediates do accumulate when weaker reducing agents are employed, allowing the ccNiR mechanism to be studied. Herein, the early stages of Shewanella oneidensis ccNiR-catalyzed nitrite reduction were investigated in isolation by using the weak reducing agents N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD) and the 2-electron reduced form of indigo trisulfonate. Experiments were …


Macromolecular Structure Determination At X-Ray Free Electron Lasers From Single-Particle Imaging To Time-Resolved X-Ray Crystallography, Ishwor Poudyal Dec 2020

Macromolecular Structure Determination At X-Ray Free Electron Lasers From Single-Particle Imaging To Time-Resolved X-Ray Crystallography, Ishwor Poudyal

Theses and Dissertations

X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction information from a single biological macromolecule. This is because XFELs can generate extremely intense X-ray pulses which are so short that diffraction data can be collected before the sample is destroyed. By collecting a sufficient number of single-particle diffraction patterns from many tilts of a molecule relative to the X-ray beam, the three-dimensional electron density can be reconstructed ab-initio. The resolution and therefore the information content of the data will ultimately depend largely on the number of patterns collected at the experiment. We estimate the number of diffraction patterns required …


Analytic Solutions For Diffusion On Path Graphs And Its Application To The Modeling Of The Evolution Of Electrically Indiscernible Conformational States Of Lysenin, K. Summer Ware Dec 2020

Analytic Solutions For Diffusion On Path Graphs And Its Application To The Modeling Of The Evolution Of Electrically Indiscernible Conformational States Of Lysenin, K. Summer Ware

Boise State University Theses and Dissertations

Memory is traditionally thought of as a biological function of the brain. In recent years, however, researchers have found that some stimuli-responsive molecules exhibit memory-like behavior manifested as history-dependent hysteresis in response to external excitations. One example is lysenin, a pore-forming toxin found naturally in the coelomic fluid of the common earthworm Eisenia fetida. When reconstituted into a bilayer lipid membrane, this unassuming toxin undergoes conformational changes in response to applied voltages. However, lysenin is able to "remember" past history by adjusting its conformational state based not only on the amplitude of the stimulus but also on its previous …


Not Too Hot, Not Too Cold, But Moderately Variable: The Influence Of Environmental Variability On Coral Thermal Tolerance, Courtney Nicole Klepac Dec 2020

Not Too Hot, Not Too Cold, But Moderately Variable: The Influence Of Environmental Variability On Coral Thermal Tolerance, Courtney Nicole Klepac

Biological Sciences Theses & Dissertations

Anthropogenic climate change is causing an increase in the frequency and severity of marine heat waves, resulting in declining health of coral reef ecosystems worldwide. Coral bleaching events – the breakdown in symbiosis between the coral host and their intracellular photosynthetic algae – are increasingly common in recent years and contribute to widespread losses in coral cover. However, bleaching and heat stress responses vary across spatial scales both within and among coral species. Coral populations native to highly variable environments can have greater bleaching resistance than corals from more stable habitats and corals transplanted into these variable reef sites can …


New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger Nov 2020

New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger

Theses

Background: Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction--a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions …


Effects Of Oxidative Modifications On The Structure And Non-Canonical Functions Of Cytochrome C Studied By Mass Spectrometry, Victor Yin Sep 2020

Effects Of Oxidative Modifications On The Structure And Non-Canonical Functions Of Cytochrome C Studied By Mass Spectrometry, Victor Yin

Electronic Thesis and Dissertation Repository

The peroxidase activity of the mitochondrial protein cytochrome c (cyt c) plays a critical role in triggering programmed cell death, or apoptosis. However, the native structure of cyt c should render this activity impossible due to the lack of open iron coordination sites at its heme cofactor. Despite its key biological importance, the molecular mechanisms underlying this structure-function mismatch remain enigmatic. The work detailed in this dissertation fills this knowledge gap by using mass spectrometry (MS) to decipher the central role that protein oxidative modifications and their associated structural changes play in activating the peroxidase function of cyt c …


Study Of The Role Of Biologically-Relevant, Labile Nickel Pools In The Maturation Of Nickel-Dependent Enzymes, Priyanka Basak Sep 2020

Study Of The Role Of Biologically-Relevant, Labile Nickel Pools In The Maturation Of Nickel-Dependent Enzymes, Priyanka Basak

Doctoral Dissertations

Cellular nickel pools, comprised of static and labile pools of nickel complexes, play important roles in maintaining nickel homeostasis in various organisms (microbes, fungi, and plants), which utilize it as a cofactor of one or more nickel enzymes that catalyze specific reactions and are essential for their proper growth and survival in various ecological niches. Like other metals, tight regulation of cellular nickel levels is critical to prevent toxic effects of nickel deprivation, nickel overload, and ‘free’ nickel. While more static nickel pools include nickel tightly bound to nickel-dependent enzymes, nickel in the labile pool is exchangeable and weakly bound …


Machine Learning Applications For Drug Repurposing, Hansaim Lim Sep 2020

Machine Learning Applications For Drug Repurposing, Hansaim Lim

Dissertations, Theses, and Capstone Projects

The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected …


Small Molecule Synthetic Carbohydrate Receptors, Marcelo F. Bravo Carranco Sep 2020

Small Molecule Synthetic Carbohydrate Receptors, Marcelo F. Bravo Carranco

Dissertations, Theses, and Capstone Projects

Carbohydrate – receptor interactions are often involved in the attachment of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered “undruggable”, meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs) – small molecules that bind carbohydrates – could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of …


Pointing The Zinc Finger On Protein Folding: Energetic Investigation Into The Role Of The Metal-Ion In The Metal-Induced Protein Folding Of Zinc Finger Motifs, Inna Bakman-Sanchez Sep 2020

Pointing The Zinc Finger On Protein Folding: Energetic Investigation Into The Role Of The Metal-Ion In The Metal-Induced Protein Folding Of Zinc Finger Motifs, Inna Bakman-Sanchez

Dissertations, Theses, and Capstone Projects

Interactions between inorganic metal-ion cofactors and organic protein scaffolds are important for the proper structure and function of metalloproteins. Zinc finger proteins (ZFPs) are an example of proteins with such crucial metal-protein interactions. Incorporation of the Zn(II)-ion into ZFPs allows for their correct folding into structures that can carry out vital biological functions which include gene expression and tumor suppression. In addition, engineered ZFPs have shown to be promising genetic therapeutics in the clinic. And yet, there is still a gap in a quantitative understanding of the energetic contribution of the metal-protein interactions towards the structure and function of these …


Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie Sep 2020

Pressure Driven Desalination Utilizing Nanomaterials, Fangyou Xie

Master's Theses

Nanomaterials such as graphene oxide and carbon nanotubes, have demonstrated excellent properties for membrane desalination, including decrease of maintenance, increase of flux rate, simple solution casting, and impressive chemical inertness. Here, two projects are studied to investigate nanocarbon based membrane desalination. The first project is to prepare hybrid membranes with amyloid fibrils intercalated with graphene oxide sheets. The addition of protein amyloid fibrils expands the interlayer spacing between graphene oxide nanosheets and introduces additional functional groups in the diffusion pathways, resulting in increase of flux rate and rejection rate for the organic dyes. Amyloid fibrils also provide structural assistance to …


1,4-Dioxane Biodegradation In Propanotrophs: Molecular Foundations And Implications For Environmental Remediation, Li Fei Aug 2020

1,4-Dioxane Biodegradation In Propanotrophs: Molecular Foundations And Implications For Environmental Remediation, Li Fei

Dissertations

1,4-Dioxane (dioxane) has emerged with an escalating concern given its human carcinogenicity and widespread occurrence in groundwater. Bioremediation is promising as an effective and cost-efficient treatment alternative for in situ or ex situ cleanup of dioxane and co-existing pollutants in the field. Soluble di-iron monooxygenases (SDIMOs) are reputed for their essential roles in initiating the cleavage of dioxane and other pollutants. In this doctoral dissertation, molecular foundations for SDIMOs-mediated dioxane biodegradation are untangled to promote the development and implication of site-specific bioremediation and natural attenuation strategies. This dissertation focused on propanotrophic bacteria given their pivotal roles in dioxane metabolism and …


Specificity Of Ssb Binding To Its Interacting Proteins And Multiple Allosteric Effects Of Ssb C-Terminal Tail On Assembly And Dna Binding Of E. Coli Recor Proteins, Min Kyung Shinn Aug 2020

Specificity Of Ssb Binding To Its Interacting Proteins And Multiple Allosteric Effects Of Ssb C-Terminal Tail On Assembly And Dna Binding Of E. Coli Recor Proteins, Min Kyung Shinn

Arts & Sciences Electronic Theses and Dissertations

The homo-tetrameric E. coli single strand (ss) DNA binding (SSB) protein is an essential component in DNA maintenance for its role in binding and protecting single stranded DNA intermediates via its N-terminal DNA binding domain (DBD). SSB also acts as a hub to recruit at least 17 SSB interacting proteins (SIPs) involved in DNA replication, recombination, and repair via its 9 amino acid C-terminal acidic tip region. A 56 amino acid intrinsically disordered linker connects the DBD and the acidic tip and plays a role in cooperative binding to ssDNA. Using isothermal titration calorimetry, I determined that the SSB-Ct peptides …


Development And Application Of Mass Spectrometry-Based Approaches For Protein Higher Order Structure Analysis And Protein-Protein Interaction Characterization, Mengru Zhang Aug 2020

Development And Application Of Mass Spectrometry-Based Approaches For Protein Higher Order Structure Analysis And Protein-Protein Interaction Characterization, Mengru Zhang

Arts & Sciences Electronic Theses and Dissertations

Proteins, one of the most fundamental biomolecules, adopt unique higher order structures (HOS) to enable diverse biological functions. Deciphering protein HOS is crucial to gain deeper insights of their working mechanisms and to develop biotherapeutics. Mass spectrometry (MS)-based approaches evolved rapidly in the past 30 years and are now playing critical roles in protein HOS characterization. One of those approaches is MS-based footprinting whose principle is to map the solvent accessible surface area (SASA) to deliver structural information. Protein footprinting can be achieved by reversible labeling, e.g., hydrogen-deuterium exchange (HDX), and by irreversible labeling using radical-based reagents or other targeted …


Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi Aug 2020

Convex Relaxations For Particle-Gradient Flow With Applications In Super-Resolution Single-Molecule Localization Microscopy, Hesam Mazidisharfabadi

McKelvey School of Engineering Theses & Dissertations

Single-molecule localization microscopy (SMLM) techniques have become advanced bioanalytical tools by quantifying the positions and orientations of molecules in space and time at the nanoscale. With the noisy and heterogeneous nature of SMLM datasets in mind, we discuss leveraging particle-gradient flow 1) for quantifying the accuracy of localization algorithms with and without ground truth and 2) as a basis for novel, model-driven localization algorithms with empirically robust performance. Using experimental data, we demonstrate that overlapping images of molecules, a typical consequence of densely packed biological structures, cause biases in position estimates and reconstruction artifacts. To minimize such biases, we develop …


Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus Aug 2020

Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus

Theses and Dissertations

This paper investigates how the snow-albedo feedback mechanism of the arctic is changing in response to rising climate temperatures. Specifically, the interplay of vegetation and snowmelt, and how these two variables can be correlated. This has the potential to refine climate modelling of the spring transition season. Research was conducted at the ecoregion scale in northern Alaska from 2000 to 2020. Each ecoregion is defined by distinct topographic and ecological conditions, allowing for meaningful contrast between the patterns of spring albedo transition across surface conditions and vegetation types. The five most northerly ecoregions of Alaska are chosen as they encompass …


Building An Ins-1 Cdna Library For A Genome-Wide Crispr-Cas9 Screen, Idongesit Ekpo Aug 2020

Building An Ins-1 Cdna Library For A Genome-Wide Crispr-Cas9 Screen, Idongesit Ekpo

Undergraduate Honors Theses

By the year 2040, an estimated 642 million people are expected to have diabetes globally. Diabetes results from an elevation of metabolic stressors, such as glucotoxicity, lipotoxicity, oxidative stress and apoptosis. In type 2 diabetes, these stressful conditions contribute to the malfunction and loss of functional insulin-producing β-cells. Current treatment methods for diabetes include insulin therapy, islet transplant and anti-diabetes medication. These treatments are not curative and ignore other factors that contribute to the pathogenesis of diabetes beyond insulin resistance and islet β-cell failure. Previous research on β-cells has focused on ways to replace functional β-cell mass, trigger β-cell proliferation, …


Application Of Carbon Nanoparticles As Dna Detection Probe And Fluorescent Ink, Luckio Frank Owuocha Aug 2020

Application Of Carbon Nanoparticles As Dna Detection Probe And Fluorescent Ink, Luckio Frank Owuocha

MSU Graduate Theses

There is a significant interest in developing a sensitive, selective, efficient, and inexpensive method for rapid molecular diagnostic tests. This research aims to develop an inexpensive nucleic acid detection method by using DNA-conjugated carbon nanoparticles that exhibit fluorescence in the visible region. Carbon nanoparticles of this class can be detected without specialized equipment and have great promise toward the development of analytical methods that can be used in resource-limited environments with a lack of access to proper diagnostic and healthcare. We employed EDC-NHS (two-step) and EDC (one-step) coupling techniques to prepare DNA-conjugated carbon nanoparticles. The dot blotting method was adapted …


Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie Aug 2020

Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie

MSU Graduate Theses

Gene therapy is a very challenging field, especially with new emerging genetic disorders. Chitosan (CS), due to chitosan’s flexibility, biocompatibility, and biodegradability, has been of interest in the world of gene therapy especially as researchers are gravitating towards non-viral vectors due to the problems caused by viral vectors. Nevertheless, there are still issues regarding solubility, cellular uptake of cargos being transported in vitro or in vivo, increased cytotoxicity levels, as well as many other things that prevent chitosan from being an efficient gene delivery agent. Here I present five derivatives of chitosan, which were all modified with either triethylphosphonium …


Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati Jul 2020

Structural Analysis Of Protein Therapeutics Using Covalent Labeling – Mass Spectrometry, Patanachai Limpikirati

Doctoral Dissertations

Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein’s structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for …


Structural Analysis Of The Multifunctional Spoiie Regulatory Protein Of Clostridioides Difficile., Blythe Emily Bunkers Jul 2020

Structural Analysis Of The Multifunctional Spoiie Regulatory Protein Of Clostridioides Difficile., Blythe Emily Bunkers

Graduate Theses and Dissertations

Clostridioides (formally Clostridium) difficile is a medically relevant pathogen pertinent to infectious disease research. C. difficile is distinctly known for its ability to produce two toxins, enterotoxin A and cytotoxin B, and the propensity to colonize the mammalian gastrointestinal tract. It is known that metabolism is tightly correlated with sporulation in endospore producers such as C. difficile, but an interesting and novel regulatory relationship found by the Ivey lab has yet to be understood. The relationship explored in this study is observed between the sporulation factor, SpoIIE, which represses expression of an ABC peptide transporter, app. In this study, two …