Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 96

Full-Text Articles in Metallurgy

High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting, Jacob A. Belke Jan 2024

High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting, Jacob A. Belke

Dissertations, Master's Theses and Master's Reports

Die soldering, an adhesion defect in high pressure die casting (HPDC), is a symptom of localized sticking where a localized portion of the cast material is adhered to the tooling surface causing build up over time. This requires the tooling to be serviced which incurs additional costs to the process that gets passed on to the parts. Historically, soldering has been mitigated using lubricants, coatings, and alloy chemistry modifications but solder persists.

The Tresca friction thermomechanical model suggests soldering occurs when the local interfacial shear stress between the casting and die surface exceeds the local shear strength of the casting. …


Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers Jan 2024

Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers

Theses and Dissertations--Chemical and Materials Engineering

Experimental process simulation and quantification of microstructure development during processing are challenging due to limitations with machinery temperature capability, inadequate resolution and sampling volume of currently available characterization techniques, and difficulty characterizing material microstructures as close to processing-relevant conditions as possible. This dissertation addresses how process simulation can be performed using Gleeble thermomechanical technologies and how microstructure development during these processing simulations can be quantified both in-situ and ex-situ.

The first portion of this dissertation demonstrates how Gleeble technologies can be applied to simulate complex material processing conditions in order to produce process-property profiles that can be used to inform …


Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


Temperature Gradient Effect On Solid-Liqid Interface Properties Of Al-Cu Alloy: A Molecular Dynamics Study, Prashant Kumar Jha Dec 2023

Temperature Gradient Effect On Solid-Liqid Interface Properties Of Al-Cu Alloy: A Molecular Dynamics Study, Prashant Kumar Jha

All Theses

Aluminum-copper (Al-Cu) alloys are widely used in the aerospace industry due to their favorable strength-to-weight ratio, good fatigue resistance, and corrosion resistance. These properties make Al-Cu alloys an excellent choice for aircraft structural components that require high strength and low weight. Additive manufacturing (AM), also known as 3D printing, has emerged as a promising processing method for Al-Cu alloys in aerospace manufacturing. AM enables the production of lightweight optimized geometries difficult to manufacture through conventional subtractive methods. AM also reduces material waste by only depositing material where needed in the part geometry. The rapid solidification conditions in AM processes motivate …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren Aug 2023

Additive Manufacturing Of High-Performance Nanolamellar Eutectic High-Entropy Alloys, Jie Ren

Doctoral Dissertations

Additive manufacturing, also called three-dimensional (3D) printing, is an emerging technology for printing net-shaped components layer by layer for applications in automotive, aerospace, biomedical and other industries. In addition to the vast design freedom offered by this approach, metal 3D printing via laser powder-bed fusion (L-PBF) involves large temperature gradients and rapid cooling and provides exciting opportunities for producing microstructures and mechanical properties beyond those achievable by conventional processing routes. Although these extreme printing conditions enable microstructural refinement to the nanoscale for achieving high strength. However, high-strength nanostructured alloys by laser additive manufacturing often suffer from limited ductility. Eutectic high-entropy …


Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell Aug 2023

Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell

Electronic Theses and Dissertations

For applications in the aerospace field, selection of materials for a given design requires an understanding of critical properties, like fatigue and fracture, in addition to static mechanical and physical properties. With the ongoing advancements in metallic additive manufacturing techniques and the interest in applying the process to aerospace applications, there is a clear need to fully characterize properties. Arguably, the most attractive alloy for applications in aerospace is the Ti-6Al-4V alloy. The current dissertation examines the mechanical properties of the alloy, made by the Electron Beam Melting (EBM) Powder Bed Fusion (PBF) method. As illustrated in this work, the …


Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali May 2023

Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali

All Dissertations

Nearly all structural and functional materials are polycrystalline alloys; they are composed of differently oriented crystalline grains that are joined at internal interfaces termed grain boundaries (GBs). It is well accepted that GB dynamics play a critical role in many phenomena during materials processing or under operating environments. Of particular interest are GB migration and grain growth processes, as they influence many crystal-size dependent properties, such as mechanical strength and electrical conductivity.

In metallic alloys, GBs offer a plethora of preferential atomic sites for alloying elements to occupy. Indeed, recent experimental studies employing in-situ microscopy revealed strong GB solute segregation …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi Apr 2023

Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi

Mechanical Engineering ETDs

Additive manufacturing is a method of manufacturing based on building parts layer by layer, allowing for more control over shape of the product, therefore reducing machining costs, reducing material waste, faster production times and the ability to build complex engineering design that other manufacturing technologies won’t be able to produce. This research is on the tensile and indentation testing (following ASME standards) of 3D printed Ti-6Al-4V and Inconel 718 built by powder-based direct energy deposition technology. Ti-6Al-4V is an attractive material for the aerospace and aviation industry, and Inconel 718, a nickel-chromium based superalloy, is an attractive material for usage …


Investigation Of Oxidation And Corrosion Resistance Of Ni-Based Alloys And Stainless Steels Under Co2 Environments At Elevated Temperatures, Spencer Roy Fultineer Jan 2023

Investigation Of Oxidation And Corrosion Resistance Of Ni-Based Alloys And Stainless Steels Under Co2 Environments At Elevated Temperatures, Spencer Roy Fultineer

Graduate Theses, Dissertations, and Problem Reports

High mechanical strength integrity, high robustness towards oxidation, and high resistance to carburization under CO2 environments at elevated temperatures are usually required for metallic systems that are employed for power generation. INCONEL 625 is a nickel-based superalloy that started development in the 1950s. This material was designed with the distinct purpose of use in high-temperature and high-pressure systems. While various materials possess the physical properties to handle these conditions, the creation of IN625 addresses the need for a material to withstand the highly corrosive properties of these kinds of environments. In order to evaluate the oxidation and corrosion resistance of …


Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto Jan 2023

Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto

UNF Graduate Theses and Dissertations

This project employs multi-instrument materials characterization to analyze material made with the “Cold Spray” additive manufacturing process. Cold spray is an emerging additive manufacturing technique with unique benefits resulting from its low temperature adhesion process induced by plastic deformation. Metallic powder collides at high speeds creating three dimensional materials and coatings without the need for melting. Copper cold sprayed specimens were analyzed using a series of imaging techniques to characterize the microstructure at varying levels of detail and magnification. Scanning electron microscopy and electron back scattered diffraction were paired with microhardness testing to generate a correlative comparison between microstructure and …


A Constitutive Material Model For Simulating Texture Evolution And Anisotropy Effects In Cold Spray., Creston Michael Giles Dec 2022

A Constitutive Material Model For Simulating Texture Evolution And Anisotropy Effects In Cold Spray., Creston Michael Giles

Theses and Dissertations

Cold spray has seen rapid advancement since its inception and has shown significant potential as a method of additive manufacturing. However, the large plastic deformation and repeated heating/cooling cycles that the material undergoes during the cold spray process can result in gradients in material structure and large residual stresses. The purpose of this study is to extend the existing EMMI material model to include anisotropic material response through the use of orientation distribution functions to predict residual stresses and anisotropy resulting from cold spray and similar additive manufacturing processes. Through the use of a finite element simulation, yield surfaces for …


Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan Nov 2022

Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan

Nanoscience and Microsystems ETDs

Metal additive manufacturing (AM) is a disruptive technology enabling the fabrication of complex and near-net-shaped parts by adding material layer-wise. It offers reduced lead production time. AM processes are finding applications in many industrial sectors such as aerospace, automotive, biomedical, and mold tooling. Despite the tremendous advantages of AM, some challenges still prevent this technology's adoption in high-standard applications. Anisotropy and inhomogeneity in the mechanical properties of the as-built parts and the existence of pores and lack-of-fusion defects are considered the main issues in directed energy deposition (L-DED) parts. Laser-engineered net shaping LENS® offers excellent possibilities to fabricate metal tools …


Ferrous Alloy Manufacturing For The Martian Surface Through In-Situ Resource Utilization With Ionic Liquids Harvested Iron And Bosch Process Carbon, Blake C. Stewart Aug 2022

Ferrous Alloy Manufacturing For The Martian Surface Through In-Situ Resource Utilization With Ionic Liquids Harvested Iron And Bosch Process Carbon, Blake C. Stewart

Theses and Dissertations

As research continues for the habitation of the Lunar and Martian surfaces, the need for materials for construction of structural parts, mechanical components, and tools remains as a major milestone. The use of in-situ resource utilization (ISRU) techniques is critical due to the financial, physical, and logistical burdens of sending supplies beyond low-Earth orbit. The Bosch process is currently in development as a life support system at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to regenerate oxygen (O2) from metabolic carbon dioxide (CO2) with the byproduct of elemental carbon (C). The Bosch process presents a …


Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht Aug 2022

Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht

All Theses

Abstract

The understanding of microstructural damage mechanisms is the foundation of better understanding existing materials and future material development. There are significant challenges to measuring these damage mechanisms in-situ as continuous observation of the state of the microstructure is difficult or impossible for many experimental setups. This thesis presents a method for measuring grain boundary sliding (GBS) and local strain concentrations in-situ via a Heaviside function based algorithm. GBS is the shearing of two grains along their shared grain boundary and is a common damage mechanism in creep which presents as a discontinuity that can be measured with a Heaviside …


Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson May 2022

Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson

Electronic Theses and Dissertations

Bound Metal Deposition (BMD) is a novel metal additive manufacturing technology in which a metal powder-binder composite paste is layer-wise extruded to form a part, which is then debound and sintered into a solid metal part. Although promising, BMD suffers from shrinkage-induced warpage and an inability to produce fine length scale features. This research addresses these problems by: (1) characterizing warpage of planar parts, and (2) developing a novel laser ablated process to create fine length scale features. First, a 12-factor resolution IV fractional-factorial design of experiments (DOE) was conducted to determine the warpage of planar parts as a function …


Properties Of 25cr7ni Stainless Steel Fabricated Through Laser-Powder Bed Fusion., Arulselvan Arumugham Akilan May 2022

Properties Of 25cr7ni Stainless Steel Fabricated Through Laser-Powder Bed Fusion., Arulselvan Arumugham Akilan

Electronic Theses and Dissertations

Stainless steel is a low carbon high alloyed system with higher concentrations of Cr& Ni, which impart high corrosion resistance to them. Alloys with approximately 25% Cr & 7% Ni in their chemical composition are commercially referred to as ‘Super Duplex Stainless Steel’. They have a unique phase composition of approximately 50% ferrite & 50% austenite, yielding a robust combination of high mechanical strength & corrosion resistance. They find extensive interest & application in the fields which demand a longer service life under intense mechanical / corrosive environment such as offshore oil rigs & pipelines in nuclear power plants. Traditional …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …


Induction Brazing, Austin Squire, Scott Compton, Logan Hathaway, Michael Fleming Jan 2022

Induction Brazing, Austin Squire, Scott Compton, Logan Hathaway, Michael Fleming

Williams Honors College, Honors Research Projects

Our team would like to research and explore ways of designing a portable device that uses induction heating/brazing to connect two exhaust pipes together.


Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv Jan 2022

Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv

Electronic Theses and Dissertations

According to the Hall-Petch equation, the refinement of grains in metals increases the yield strength of the material. Austenite grain size influences the fineness of microstructural constituents in the ferrous alloys. It is well studied that cerium and titanium refine the austenite in steels and some gray irons, but no studies have been done to systematically explore the effects of cerium and titanium additions on austenite in ductile iron. This study sought to determine the effects of selected levels of these elements on the grain size within ductile iron. A hypoeutectic iron was chosen for testing as the proeutectic phase …


Laptop Recycling Case Study: Estimating The Contained Value And Value Recovery Process Feasibility Of End-Of-Life Consumer Electronics, Zebulon Hart Jan 2022

Laptop Recycling Case Study: Estimating The Contained Value And Value Recovery Process Feasibility Of End-Of-Life Consumer Electronics, Zebulon Hart

Theses and Dissertations--Mining Engineering

Work has been done to establish, through the development and use of novel assay techniques and analysis metrics, the contained value of a sampling of laptop computers (as an analog for myriad e-waste sources). This work has conceptualized e-waste as an alternative to geologic-origin complex metallic ores and has likewise evaluated the feasibility of value recovery from e-waste sources in a similar manner to an ore. The application of conventional and novel mineral separation techniques to e-waste recycling processes has been evaluated and positive results are demonstrated. Further, this work has demonstrated the ability to identify the presence of base …


A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach Jan 2022

A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach

Electronic Theses and Dissertations

This study seeks to determine the technical feasibility of fabricating reduced activation ferritic martensitic (RAFM) steel parts, using a wire arc additive manufacturing (WAAM) process. The WAAM process, manufactures a part by depositing layers of metal onto a substrate to build a large scale near net shape part. RAFM alloy steels are next generation steels designed to resist radiation effects in the radiation intense working environments, such as nuclear reactors. To achieve this, process development and testing to design the WAAM production process with the custom RAFM filler wire was carried out. Several welding waveform modes were tested, and it …


Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams Dec 2021

Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams

Theses and Dissertations

High hardness steels (HHS) are vulnerable to hydrogen embrittlement, which can lead to rapid degradation of mechanical properties. Improved resistance to hydrogen embrittlement would be beneficial to many industries including construction, automotive, and military. A comparison study was performed to assess the hydrogen susceptibility of select commercially available and in-house designed HHS alloys. Slow strain rate tensile tests, performed with specimens charged with various levels of hydrogen, provided a macroscopic view of the onset of hydrogen embrittlement. Hydrogen permeation and thermal desorption spectroscopy tests determined the uptake and diffusivity of hydrogen through the material. The evaluation of hydrogen susceptibility for …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen Aug 2021

Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen

LSU Doctoral Dissertations

Selective Laser Melting (SLM) is a laser powder bed fusion (L-PBF) based additive manufacturing (AM) method, which uses a laser beam to melt the selected areas of the metal powder bed. A customized SLM 3D printer that can handle a small quantity of metal powders was built in the lab to achieve versatile research purposes. The hardware design, electrical diagrams, and software functions are introduced in Chapter 2. Several laser surface engineering and SLM experiments were conducted using this customized machine which showed the functionality of the machine and some prospective fields that this machine can be utilized. Chapter 3 …


Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar Aug 2021

Transients In Plastic Instabilities During Thermo-Mechanical Reversals In An Additively Manufactured Ti6al4v, Sabina C. Kumar

Doctoral Dissertations

A complex interaction of process variables in an evolving geometry during Additive Manufacturing (AM), can bring about spatial and temporal transients of temperature and stress within each layer in a part. Although AM shares commonalities with conventional processing techniques such as casting, welding, and thermo-mechanical process, published literature has shown that the steady-state conditions are not strictly valid during AM process. Macro-scale fluctuations of thermal gradients (dT/dx: 103 to 107 K/m) combined with local changes in thermal expansion coefficients, crystallographic strains and localized stress-strain constitutive properties in conjunction with thermal cycles, can bring about a plastic strain gradient …


Anisotropic Plasticity Modeling Of Thin Sheets And Its Application To Micro Channel Forming Of Steel Foils, Jie Sheng Jul 2021

Anisotropic Plasticity Modeling Of Thin Sheets And Its Application To Micro Channel Forming Of Steel Foils, Jie Sheng

Mechanical Engineering Research Theses and Dissertations

Thin sheet metals and ultrathin metal foils produced by industrial rolling processes are textured polycrystalline materials and their mechanical behaviors may depend strongly on the orientation of applied loading. Consideration of such plastic anisotropy in advanced modeling of these materials is of the paramount importance in designing optimal manufacturing processes for automotive and other applications using finite element methods. This research addresses several critical issues in anisotropic plasticity modeling and its applications in analyzing micro channel forming of ultrathin stainless-steel foils. An experimental study has first been carried out on the accuracy and sensitivity of measuring the plastic strain ratios …


Study Of Laser Based Additive Manufacturing For Titanium And Copper Alloys, Congyuan Zeng Mar 2021

Study Of Laser Based Additive Manufacturing For Titanium And Copper Alloys, Congyuan Zeng

LSU Doctoral Dissertations

Material processing by laser is increasingly applied in industrial applications for its outstanding characteristics, such as localized heating, high efficiency, and high manufacturing precision. In this study, two kinds of laser material processing strategies were investigated, namely laser surface engineering and laser-powder-bed fusion additive manufacturing, with pure titanium and copper alloys as target materials, respectively.

For laser surface engineering related studies, the work includes the investigation of the dynamic interactions between titanium and pure nitrogen or ambient air under transient laser processing conditions. Thanks to the in-situ synchrotron X-ray diffraction tests, the high-temperature reaction steps between titanium and pure nitrogen/ambient …


The Investigation Of The Underlying Microstructure Associated With Fracture Features In 6061 Cold Sprayed Aluminum, Justin White Jan 2021

The Investigation Of The Underlying Microstructure Associated With Fracture Features In 6061 Cold Sprayed Aluminum, Justin White

UNF Graduate Theses and Dissertations

Cold gas dynamic spraying commonly known as cold spray is a process currently used for restoration, re-tolerancing, and application of coatings. With additional resources allocated towards the development of a through process model aimed at predicting the properties of bulk material produced via the Cold Spray process, more lab testing and investigation must be done to capture the effects of the varying microstructure in CS materials. The properties of ultra-fine-grained materials are derived from data collected from coarse grained materials and processes that do not accurately capture the effects as elevated strain rates and ultra-fine-grained materials. The lack of property …