Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Graduate Theses and Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 106

Full-Text Articles in Power and Energy

Ism-Band Energy Harvesting Wireless Sensor Node, Fnu Naveed Dec 2023

Ism-Band Energy Harvesting Wireless Sensor Node, Fnu Naveed

Graduate Theses and Dissertations

In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate …


Analysis Of An Isolated Bidirectional Ćuk Converter, Yeny Hau Chen May 2023

Analysis Of An Isolated Bidirectional Ćuk Converter, Yeny Hau Chen

Graduate Theses and Dissertations

The objective of this thesis is to perform an analysis of the isolated bidirectional Ćuk dc-dc converter topology and demonstrate the advantages and operation of this configuration through simulations using MATLAB/SimulinkTM and measurements collected from a 1.5-kW prototype tested at the Engineering Research Center (ENRC) laboratory of the University of Arkansas. The idea of integrating an active-clamp snubber circuit on each side of the converter, proposed by Dr. Sudip Mazumder from the University of Illinois, Chicago, limits the additional voltage stresses on the components due to the energy from the transformer’s leakage inductance. This is studied in this thesis to …


Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil May 2023

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil

Graduate Theses and Dissertations

Decreasing transistor feature size has led to an increase in the number of transistors in integrated circuits (IC), allowing for the implementation of more complex logic. However, such logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock must reach many more gates over larger areas. Thus, timing analysis requires significantly more computing power and designer involvement than in the past. For these reasons, IC designers have been pushed to nix conventional synchronous (SYNC) architecture and explore novel methodologies such as asynchronous, self-timed architecture. This dissertation evaluates the nominal active energy, voltage-scaled active energy, …


Design Approaches To Enhance Power Density In Power Converters For Traction Applications, Shamar Christian May 2023

Design Approaches To Enhance Power Density In Power Converters For Traction Applications, Shamar Christian

Graduate Theses and Dissertations

This dissertation presents a design strategy to increase the power density for automotive Power Conversion Units (PCUs) consisting of DC-DC and DC-AC stages. The strategy significantly improves the volumetric power density, as evident by a proposed PCU constructed and tested having 55.6 kW/L, representing an 11.2 % improvement on the Department of Energy’s 2025 goal of 50 kW/L for the same power electronics architecture. The dissertation begins with a custom magnetic design procedure, based on optimization of a predetermined C-core geometrical relationship and custom Litz wire. It accounts for electrical and thermal tradeoffs to produce a magnetic structure to best …


Multiple Output Power Supply Using Toroidal Transformers For Medium Voltage Active Gate Drivers, Samhitha Venkata Machireddy May 2023

Multiple Output Power Supply Using Toroidal Transformers For Medium Voltage Active Gate Drivers, Samhitha Venkata Machireddy

Graduate Theses and Dissertations

When operating in high power applications, power devices dissipate tens or hundreds of watts of power in the form of heat. The ability of the power devices to withstand power and dissipation of heat across the power devices becomes a prominent requirement in designing the power converter. This challenge demands a power converter design to be more effective and consistent which factors in size, cost, weight, power density and reliability. This study aims to propose a gate driver isolated power supply design that can be used in medium voltage applications (e.g., up to 10 kV) while respecting the principle of …


Electrical Modeling For Dynamic Performance Prediction And Optimization Of Mcpms Layout, Quang Minh Le Dec 2022

Electrical Modeling For Dynamic Performance Prediction And Optimization Of Mcpms Layout, Quang Minh Le

Graduate Theses and Dissertations

In recent years, the fast development of Multichip Power Modules (MCPM) packaging and Wide Bandgap (WBG) technology has enabled higher voltage and current ratings, better thermal performance, lower parasitic parameters, and higher mechanical reliability. However, the design of the MCPM layout is a multidisciplinary problem leading to many time-consuming analyses and tedious design processes. Because of these challenges, the design automation tool for MCPM layout has become an emerging research area and gained much attention from the power electronics community. The two critical objectives of a design automation tool for MCPM layout are fast and accurate models for design insights …


Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting Aug 2022

Controller Platform Design And Demonstration For An Electric Aircraft Propulsion Driv, Rosten Sweeting

Graduate Theses and Dissertations

With the growth in the aerospace industry there has been a trend to optimize the performance of an aircraft by reducing fuel consumption and operational cost. Recent advancements in the field of power electronics have pushed towards the concepts of hybrid electric aircraft also known as more electrical aircrafts. In this work, a custom controller board for an electric aircraft propulsion drive was designed to drive a permanent magnet synchronous motor. Design of the controller board required knowledge of the topology selection and power module selections. Simulations of the system were performed using MATLAB/Simulink to analyze the overall performance of …


Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi Aug 2022

Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi

Graduate Theses and Dissertations

Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM …


Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette Aug 2022

Evaluation Of Single Phase Smart Pv Inverter Functions In Unbalanced Residential Distribution Systems, Darren Symonette

Graduate Theses and Dissertations

In the United States, smart PV inverters integrated with residential distribution systems are becoming a more common occurrence. With integration of smart PV inverters, power utilities are experiencing an increase of number of operations with regards to switched capacitor banks, voltage regulators and on load tap changers. These increases can lead to excess wear and tear on the devices causing power utilities to perform unwanted replacement and maintenance. However, smart PV inverters when controlled under specific functions can enable these inverters to provide reactive power and voltage control which in turn lowers the number of operations for switched capacitor banks, …


Junction Temperature Estimation Of Silicon Carbide Power Module Using Internal Gate Resistance As Temperature Sensitive Electrical Parameter, Michael Sykes May 2022

Junction Temperature Estimation Of Silicon Carbide Power Module Using Internal Gate Resistance As Temperature Sensitive Electrical Parameter, Michael Sykes

Graduate Theses and Dissertations

The junction temperature of a power module is measured non-intrusively and uninterrupted in its application by analyzing the dependency of gate resistance to temperature. The circuit configuration proposed consists of altering the gate loop path and adding a basic peak detection circuit with an added low-pass filter to accurately measure the small differences seen during a temperature change on the internal gate resistance. The testing on this Silicon Carbide power module shows that the internal gate resistance has a positive temperature coefficient. This causes the current and the voltage drop on the gate loop sensing resistance to reduce as the …


High Power Density And High Efficiency Converter Topologies For Renewable Energy Conversion And Ev Applications, Dereje Lemma Woldegiorgis May 2022

High Power Density And High Efficiency Converter Topologies For Renewable Energy Conversion And Ev Applications, Dereje Lemma Woldegiorgis

Graduate Theses and Dissertations

This dissertation work presents two novel converter topologies (a three-level ANPC inverter utilizing hybrid Si/SiC switches and an Asymmetric Alternate Arm Converter (AAAC) topology) that are suitable for high efficiency and high-power density energy conversion systems. The operation principle, modulation, and control strategy of these newly introduced converter topologies are presented in detail supported by simulation and experimental results. A thorough design optimization of these converter topologies (Si/SiC current rating ratio optimization and gate control strategies for the three-level ANPC inverter topology and component sizing for the asymmetric alternate arm converter topology) are also presented.

Performance comparison of the proposed …


Analysis And Optimization Of The Two-Phase Series Capacitor Buck Dc-Dc Converter, Salahaldein Ali Aboajila Ahmed May 2022

Analysis And Optimization Of The Two-Phase Series Capacitor Buck Dc-Dc Converter, Salahaldein Ali Aboajila Ahmed

Graduate Theses and Dissertations

Current sharing schemes for conventional multi-phase converters are based on sensing each phase current to deliver the current information to their controllers. In conventional buck converters, this fact may require a preset current sharing ratio at the expense of efficiency, which eventually requires a larger sensing circuit to achieve the sensing accuracy of each phase. Introducing the concept of automatic current sharing is one of the solutions to tackle this issue. Automatic current sharing (Current Sharing Mechanism CSM) is an advanced way to distribute heat generation in multi-phase switching topologies at full load. A two-phase series capacitor buck converter (2-pscB) …


Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt Dec 2021

Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt

Graduate Theses and Dissertations

The increase in energy demanded by transportation and energy sectors has necessitated highly efficient thermal management for reliable power electronics operations. Conventional cooling techniques are limited by their inability to target switching location hot spot temperatures, leading to non-uniform thermal gradients. These devices, such as cold plates and heat sinks, also utilize heavy metallic structures that can accentuate electromagnetic interferences generated by high voltage switching processes. This work proposes a non-metallic jet impingement cooler for more customized thermal management, while simultaneously reducing the harmful effects of electromagnetic interferences. Additive manufacturing is utilized to enable jet impingement zones to target individual …


Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis Dec 2021

Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis

Graduate Theses and Dissertations

The reliability of electronic devices is dependent upon the conditions to which they are subject. Temperature variations coupled with differences in thermal expansion between bonded materials results in thermomechanical stresses to build up, which can instigate failure in the interconnects or other critical regions. With the move towards electrification in the automotive industry, there is the increasingly important consideration of powertrain electronics reliability, the pertinent conditions being governed by the drive cycle or mission profile of the vehicle. The mission profile determines the power dissipated by the electronic devices, which determines the peak and mean temperature, temperature swing and the …


A Double-Sided Stack Low-Inductance Wire-Bondless Sic Power Module With A Ceramic Interposer, Si Huang Dec 2021

A Double-Sided Stack Low-Inductance Wire-Bondless Sic Power Module With A Ceramic Interposer, Si Huang

Graduate Theses and Dissertations

The objective of this dissertation research is to develop a novel three-dimensional (3-D) wire bondless power module package for silicon carbide (SiC) power devices to achieve a low parasitic inductance and an improved thermal performance. A half-bridge module consisting of 900-V SiC MOSFETs is realized to minimize stray parasitic inductance as well as to provide both vertical and horizontal cooling paths to maximize heat dissipation. The proposed 3-D power module package was designed, simulated, fabricated and tested. In this module, low temperature co-fired ceramic (LTCC) substrate with vias is utilized as an interposer of which both top and bottom sides …


Use Of The Igbt Module In The Active Region To Design A High Current Active Filter, Jorge F. Galarraga Jul 2021

Use Of The Igbt Module In The Active Region To Design A High Current Active Filter, Jorge F. Galarraga

Graduate Theses and Dissertations

Particle accelerators require high-precision magnetic fields on the order or 100ppm or less. This implies that the precision of the associated electrical current in the electromagnet that generates these fields should be smaller than 100ppm. However, conventional switching power supplies cannot offer this precision due to the frequency limitation of the switches. This research considers the use of power electronics devices operating in a linear as an alternative solution to meet the requirements of particle accelerator electromagnets.

This thesis presents the study of an insulated-gate bipolar transistor (IGBT) driver using a new control method that linearizes the IGBT’s collector-emitter voltage …


Design And Validation Of A High-Power, High Density All Silicon Carbide Three-Level Inverter, Zhongjing Wang Jul 2021

Design And Validation Of A High-Power, High Density All Silicon Carbide Three-Level Inverter, Zhongjing Wang

Graduate Theses and Dissertations

Transportation electrification is clearly the road toward the future. Compared to internal combustion engine, the electrified vehicle has less carbon-dioxide emission, less maintenance costs and less operation costs. It also offers higher efficiency and safety margin. More importantly, it relieves human’s dependence on conventional fossil energy. In the electrification progress, the revolution of electric traction drive systems is one of the most important milestone. The traction system should keep high efficiency to avoid performance reduction. Moreover, the motor drive should be designed within limited space without sacrificing output power rating. Based on the road map from US Drive Electrical and …


Grid Strength Assessment Trough Q-V Modal Analysis And Maximum Loadability Of A Wind-Dominated Power System Using P-Q Regions, Pierre Obed Dorile Jul 2021

Grid Strength Assessment Trough Q-V Modal Analysis And Maximum Loadability Of A Wind-Dominated Power System Using P-Q Regions, Pierre Obed Dorile

Graduate Theses and Dissertations

Climate change is a menace to the existence of the world and policymakers are trying totackle this phenomenon by deploying large-scale wind farms into their grids. Among them, wind energy shows a promising future to substitute the traditional power plants. However, the deployment of these wind farms into the grid is not a panacea that does not pose any challenges to the grid operators. Keeping the power system voltage stable while considering the strength of the transmission grid is among the major challenges facing by the transmission system operators. Amid normal operation and fault conditions, wind farms should help the …


Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud Jul 2021

Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud

Graduate Theses and Dissertations

Direct torque control (DTC) is an extensively used control method for motor drives due to its unique advantages, e.g., the fast dynamic response and the robustness against motor parameters variations, uncertainties, and external disturbances. Using higher switching frequency is generally required by DTC to reduce the torque ripples and decrease stator current total harmonic distortion (THD), which however can lower the drive efficiency. Through the use of the emerging silicon carbide (SiC) devices, which have lower switching losses compared to their silicon counterparts, it is feasible to achieve high efficiency and low torque ripple simultaneously for DTC drives.

To overcome …


Electrochemical Deposition In Energy Storage Devices, Witness Atutala Martin Jul 2021

Electrochemical Deposition In Energy Storage Devices, Witness Atutala Martin

Graduate Theses and Dissertations

Metals, whether in a solid or soluble ion form, are a vital part of any electrochemical storage system. More so, Li metal is widely considered as the ideal anode because of its low density and low electrochemical potential (-3.04 V vs. the standard hydrogen electrode – SHE). However, just like most metals, it does not plate or strip evenly during cycling which can lead to cycling performance issues, short cycling lifespans, and even safety concerns brought about by dendrites that can cause internal short-circuiting within cells. This research focused on investigating the electroplating of metals in both aqueous and non-aqueous …


Memory Module Design For High-Temperature Applications In Sic Cmos Technology, Affan Abbasi May 2021

Memory Module Design For High-Temperature Applications In Sic Cmos Technology, Affan Abbasi

Graduate Theses and Dissertations

The wide bandgap (WBG) characteristics of SiC play a significant and disruptive role in the power electronics industry. The same characteristics make this material a viable choice for high-temperature electronics systems. Leveraging the high-temperature capability of SiC is crucial to automotive, space exploration, aerospace, deep well drilling, and gas turbines. A significant issue with the high-temperature operation is the exponential increase in leakage current. The lower intrinsic carrier concentration of SiC (10-9 cm-3) compared to Si (1010 cm-3) leads to lower leakage over temperature. Several researchers have demonstrated analog and digital circuits designed in SiC. However, a memory module is …


Analog Spiking Neural Network Implementing Spike Timing-Dependent Plasticity On 65 Nm Cmos, Luke Vincent May 2021

Analog Spiking Neural Network Implementing Spike Timing-Dependent Plasticity On 65 Nm Cmos, Luke Vincent

Graduate Theses and Dissertations

Machine learning is a rapidly accelerating tool and technology used for countless applications in the modern world. There are many digital algorithms to deploy a machine learning program, but the most advanced and well-known algorithm is the artificial neural network (ANN). While ANNs demonstrate impressive reinforcement learning behaviors, they require large power consumption to operate. Therefore, an analog spiking neural network (SNN) implementing spike timing-dependent plasticity is proposed, developed, and tested to demonstrate equivalent learning abilities with fractional power consumption compared to its digital adversary.


Design And Assembly Of High-Temperature Signal Conditioning System On Ltcc With Silicon Carbide Cmos Circuits, Sajib Roy May 2021

Design And Assembly Of High-Temperature Signal Conditioning System On Ltcc With Silicon Carbide Cmos Circuits, Sajib Roy

Graduate Theses and Dissertations

The objective of the work described in this dissertation paper is to develop a prototype electronic module on a low-temperature co-fired ceramic (LTCC) material. The electronic module would perform signal conditioning of sensor signals (thermocouples) operating under extreme conditions for applications like gas turbines to collect data on the health of the turbine blades during operation so that the turbines do not require shutdown for inspection to determine if maintenance is required. The collected data can indicate when such shutdowns, which cost $1M per day, should be scheduled and maintenance actually performed. The circuits for the signal conditioning system within …


Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran May 2021

Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran

Graduate Theses and Dissertations

Infrared (IR) radiation spans the wavelengths of the windows: (1) near-IR region ranging from 0.8 to 1.0 μm, (2) shortwave IR (SWIR) ranging from 1.0 to 3.0 μm, (3) mid-wave IR (MWIR) region covering from 3.0 to 5.0 μm, (4) longwave IR (LWIR) spanning from 8.0 to 12.0 μm, and (5) very longwave IR extending beyond 12.0 μm. The MWIR and LWIR regions are important for night vision in the military, and since the atmosphere does not absorb at these wavelengths, they are also used for free-space communications and astronomy. Automotive and defect detection in the food industry and electronic …


Improvement Of Stability Of A Grid-Connected Inverter With An Lcl Filter By Robust Strong Active Damping And Model Predictive Control, Seungyong Lee May 2021

Improvement Of Stability Of A Grid-Connected Inverter With An Lcl Filter By Robust Strong Active Damping And Model Predictive Control, Seungyong Lee

Graduate Theses and Dissertations

This study addresses development and implementation of robust control methods for a three-phase grid-connected voltage source inverter (VSI) accompanied by an inductive-capacitive-inductive (LCL) filter. A challenge of current control for the VSI is LCL filter resonance near to the control stability boundary, which interacts with the inverter control switching actions and creates the possibility of instability. In general, active damping is needed to stabilize the system and ensure robust performance in steady-state and dynamic responses. While many active damping methods have been proposed to resolve this issue, capacitor-current-feedback active damping has been most widely used for its simple implementation.

There …


An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid May 2021

An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid

Graduate Theses and Dissertations

Due to narrower bandgap and lower critical electric field, silicon (Si) power devices have reached their limit in terms of the maximum blocking voltage capability. Exploiting this limitation, wide bandgap devices, namely silicon carbide (SiC) and gallium nitride (GaN) devices, are increasingly encroaching on the lucrative power electronics market. Unlike GaN, SiC devices can exploit most of the established fabrication techniques of Si power devices. Having substrate of the same material, vertical device structures with higher breakdown capabilities are feasible in SiC, unlike their GaN counterpart. Also, the excellent thermal conductivity of SiC, compared to GaN and Si, let SiC …


An 8-Bit Analog-To-Digital Converter For Battery Operated Wireless Sensor Nodes, Marvin Wayne Suggs Jr. May 2021

An 8-Bit Analog-To-Digital Converter For Battery Operated Wireless Sensor Nodes, Marvin Wayne Suggs Jr.

Graduate Theses and Dissertations

Wireless sensing networks (WSNs) collect analog information transduced into the form of a voltage or current. This data is typically converted into a digital representation of the value and transmitted wirelessly using various modulation techniques. As the available power and size is limited for wireless sensor nodes in many applications, a medium resolution Analog-to-Digital Converter (ADC) is proposed to convert a sensed voltage with moderate speeds to lower power consumption. Specifications also include a rail-to-rail input range and minimized errors associated with offset, gain, differential nonlinearity, and integral nonlinearity. To achieve these specifications, an 8-bit successive approximation register ADC is …


Robust Control Of A Multi-Phase Interleaved Boost Converter For Photovoltaic Application Using Μ-Synthesis Approach, Badur Mueedh Alharbi Dec 2020

Robust Control Of A Multi-Phase Interleaved Boost Converter For Photovoltaic Application Using Μ-Synthesis Approach, Badur Mueedh Alharbi

Graduate Theses and Dissertations

The high demand of energy efficiency has led to the development power converter topologies and control system designs within the field of power electronics. Recent advances of interleaved boost converters have showed improved features between the power conversion topologies in several aspects, including power quality, efficiency, sustainability and reliability.

Interleaved boost converter with multi-phase technique for PV system is an attractive area for distributed power generation. During load variation or power supply changes due to the weather changes the output voltage requires a robust control to maintain stable and perform robustness.

Connecting converters in series and parallel have the advantages …


Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim Dec 2020

Fractional Order Identification Method And Control: Development Of Control For Non-Minimum Phase Fractional Order System, Majid Abdullah Alhomim

Graduate Theses and Dissertations

The increasing use of renewable energy has resulted in the need for improved a dc-dc converters. This type of electronic-based equipment is needed to interface the dc voltages normally encountered with solar arrays and battery systems to voltage levels suitable for connecting three phase inverters to distribution level networks. As grid-connected solar power levels continue to increase, there is a corresponding need for improved modeling and control of power electronic converters. In particular, higher levels of boost ratios are needed to connect low voltage circuits (less than 1000 V) to medium voltage levels in the range of 13 kV to …


Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado Dec 2020

Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado

Graduate Theses and Dissertations

The objective of this thesis is to present a design for a low parasitic inductance, high power density 3-phase inverter using silicon-carbide power modules for traction application in the electric vehicles with a power rating of 350 kW. With the market share of electric vehicles continuing to grow, there is a great opportunity for wide bandgap semiconductors such as silicon carbide (SiC) to improve the efficiency and size of the motor drives in these applications. In order to accomplish this goal, careful design and selection of each component in the system for optimum performance from an electrical, mechanical, and thermal …