Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Fabrication Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 120

Full-Text Articles in Nanotechnology Fabrication

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi Jan 2024

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati May 2023

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin Dec 2022

An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin

Electrical Engineering Theses

Inflammatory biomarkers present in the human body play a vital role in medical field by guiding the clinician in decision-making for many diseases. The levels of these inflammatory biomarkers are associated with the severity and progress of several diseases. Researchers have found that increasing severity of many diseases such as cardiovascular disease, after surgery infection, and adverse clinical outcomes due to infectious diseases, results in the elevation of the level of inflammatory biomarkers in human sweat. Furthermore, the inflammatory cytokines indicate the pathophysiology and prognosis of critically ill SARS‑CoV‑2 patients. In this thesis work, different sensors have been developed for …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Photoassisted Nanoscale Memory Resistors, Amir Shariffar May 2022

Photoassisted Nanoscale Memory Resistors, Amir Shariffar

Graduate Theses and Dissertations

Memristors or memory resistors are promising two-terminal devices, which have the potential to revolutionize current electronic memory technologies. Memristors have been extensively investigated and reported to be practical devices, although they still suffer from poor stability, low retention time, and laborious fabrication processes.

The primary aim of this project was to achieve a device structure of quantum dots or thin films to address a fundamental challenge of unstable resistive switching behavior in memristors. Moreover, we aimed to investigate the effects of light illumination in terms of intensity and wavelength on the performance of the fabricated memristor. The parameters such as …


Iii-Nitride Nanostructures: Photonics And Memory Device Applications, Barsha Jain Dec 2021

Iii-Nitride Nanostructures: Photonics And Memory Device Applications, Barsha Jain

Dissertations

III-nitride materials are extensively studied for various applications. Particularly, III-nitride-based light-emitting diodes (LEDs) have become the major component of the current solid-state lighting (SSL) technology. Current III-nitride-based phosphor-free white color LEDs (White LEDs) require an electron blocking layer (EBL) between the device active region and p-GaN to control the electron overflow from the active region, which has been identified as one of the primary reasons to adversely affect the hole injection process. In this dissertation, the effect of electronically coupled quantum well (QW) is investigated to reduce electron overflow in the InGaN/GaN dot-in-a-wire phosphor-free white LEDs and to improve the …


Additive Manufacturing Using Robotic Manipulators, Fdm, And Aerosol Jet Printers., Alexander Curry Dec 2021

Additive Manufacturing Using Robotic Manipulators, Fdm, And Aerosol Jet Printers., Alexander Curry

Electronic Theses and Dissertations

Additive manufacturing has created countless new opportunities for fabrication of devices in the past few years. Advances in additive manufacturing continue to change the way that many devices are fabricated by simplifying processes and often lowering cost. Fused deposition modeling (FDM) is the most common form of 3D printing. It is a well-developed process that can print various plastic materials into three-dimensional structures. This technology is used in a lot of industries for rapid prototyping and sometimes small batch manufacturing. It is very inexpensive, and a prototype can be created in a few hours, rather than days. This is useful …


Development Of A Point-Of-Use Testing Platform For Detecting Bacteria Infection In Raw Milk, Xin Xia Aug 2021

Development Of A Point-Of-Use Testing Platform For Detecting Bacteria Infection In Raw Milk, Xin Xia

Masters Theses

The detection and quantification of bacteria are essential to environment and food quality monitoring. Escherichia coli (E. coli) is a common pathogen, also a causative agent of mastitis. Traditional methods usually require samples to be tested in a laboratory. However, sending samples to remote lab increases the cost of time and money spent on delivery. Sometimes, samples can degrade during this long progress and cause inaccuracy. A low cost and reusable sensor is designed to perform on-site quantification. The sensor composed of two layers of asymmetrical mesh electrodes, which is used in coordination magnetic microparticles functionalized with bacterium-specific antibody. Immunological …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Optoelectronic Valley-Spin Qubits With Ambipolar Quantum Dots, Jeremy Tull May 2021

Optoelectronic Valley-Spin Qubits With Ambipolar Quantum Dots, Jeremy Tull

Electrical Engineering Undergraduate Honors Theses

The current limitations of qubit-based processors are caused by imperfections in quantum gates, leading to a lack of gate fidelity. Gate fidelity can be refined by extending the coherence of qubits and reducing logic operation speed. A potential solution is to develop a hybrid qubit that has the coherence of electrically-controlled quantum dots and the gate speed of their optically-controlled counterparts. Quantum bits that utilize ultrafast optical gating to perform gate operations require precise control of the gating pulse duration. Optical dispersion can cause adverse effects pulse duration, such as pulse broadening, so dispersion-compensation techniques must be employed; by properly …


Design And Fabrication Of A Microstrip Bandpass Filter In Ltcc, Allison Rucker May 2021

Design And Fabrication Of A Microstrip Bandpass Filter In Ltcc, Allison Rucker

Electrical Engineering Undergraduate Honors Theses

The goal of the project was to design and fabricate a bandpass filter with a center frequency of 25GHz with a 2GHz bandwidth. The first step was to do the calculation to design a bandpass filter to meet these specifications along with the properties of the DupontTM GreenTapeTM 9K7. HFSS was then used to verify the results from the initial calculations. There was a significant error between the two results, so more tweaking was done to the calculations to get a better center frequency. After a final design was decided, the fabrication process started. Low-Temperature Co-Fired Ceramics (LLTC) …


Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete Nov 2020

Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete

FIU Electronic Theses and Dissertations

MagnetoElectric Nanoparticles (MENPs) are known to be a powerful tool for a broad range of applications spanning from medicine to energy-efficient electronics. MENPs allow to couple intrinsic electric fields in the nervous system with externally controlled magnetic fields. This thesis exploited MENPs to achieve contactless brain-machine interface (BMIs). Special electromagnetic devices were engineered for controlling the MENPs’ magnetoelectric effect to enable stimulation and recording. The most important engineering breakthroughs of the study are summarized below.

(I) Metastable Physics to Localize Nanoparticles: One of the main challenges is to localize the nanoparticles at any selected site(s) in the brain. The fundamental …


Fabrication And Application Of Flexible Sensors, Tallis Huther Da Costa Aug 2020

Fabrication And Application Of Flexible Sensors, Tallis Huther Da Costa

LSU Doctoral Dissertations

A transfer printing method was developed to transfer carbon nanotubes (CNTs) from polyethylene terephthalate (PET) film to poly(dimethyl siloxane) (PDMS) polymer. Carbon nanotubes are composed of carbon atoms arranged in a honeycomb lattice structure, which are electrically conducting. When embedded in a nonconducting polymer, carbon nanotubes impart electrical conductivity to the nanocomposite, thus forming a nanocomposite that has potential applications in highly sensitive strain and pressure sensors. Several printing methods have been studied to deposit carbon nanotubes onto PDMS, including inkjet printing. Inkjet printing is a desirable deposition method since it is low-cost, simple, and allows the processing of aqueous-based …


Flexible Capacitive Pressure Sensors And Triboelectric Energy Harvesters Using Laser-Assisted Patterning Process For Flexible Hybrid Electronic Applications, Valliammai Palaniappan Jul 2020

Flexible Capacitive Pressure Sensors And Triboelectric Energy Harvesters Using Laser-Assisted Patterning Process For Flexible Hybrid Electronic Applications, Valliammai Palaniappan

Masters Theses

This work focuses on the design, fabrication and characterization of novel flexible capacitive pressure sensors and triboelectric energy harvesters using laser-assisted patterning process for flexible hybrid electronic applications. Initially, the capacitive pressure sensor was developed by fabricating a set of polydimethylsiloxanes (PDMS) dielectric films with pyramid shaped micro-structures using a laser-assisted patterning process. The pressure sensor consists of two electrodes (top and bottom) that were fabricated by depositing silver (Ag) on flexible polyethylene terephthalate (PET) using additive screen-printing process. Finally, the pressure sensor was assembled by attaching the top and bottom Ag electrodes to the smooth side of pyramid shaped …


Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang Jun 2020

Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang

FIU Electronic Theses and Dissertations

The greatly increased interest in magnetoelectric materials over the last decade is due to their potential to enable next-generation multifunctional nanostructures required for revolutionizing applications spanning from energy-efficient information processing to medicine. Magnetoelectric nanomaterials offer a unique way to use a voltage to control the electron spin and, reciprocally, to use remotely controlled magnetic fields to access local intrinsic electric fields. The magnetoelectric coefficient is the most critical indicator for the magnetoelectric coupling in these nanostructures. To realize the immense potential of these materials, it is necessary to maximize the coefficient. Therefore, the goal of this PhD thesis study was …


Development And Test Of High Temperature Surface Acoustic Wave Gas Sensors, Armando E. Ayes Moncada May 2020

Development And Test Of High Temperature Surface Acoustic Wave Gas Sensors, Armando E. Ayes Moncada

Electronic Theses and Dissertations

The demand for sensors in hostile environments, such as power plant environments, exhaust systems and high-temperature metallurgy environments, has risen over the past decades in a continuous attempt to increase process control, improve energy and process efficiency in production, reduce operational and maintenance costs, increase safety, and perform condition-based maintenance in equipment and structures operating in high-temperature, harsh-environment conditions. The increased reliability, improved performance, and development of new sensors and networks with a multitude of components, especially wireless networks, are the target for operation in harsh environments. Gas sensors, in particular hydrogen gas sensors, operating above 200°C are required in …


Rapid Prototyping Of Nanostructures With Electron Beam Induced Processing, Samaneh Esfandiarpour Jan 2020

Rapid Prototyping Of Nanostructures With Electron Beam Induced Processing, Samaneh Esfandiarpour

Theses and Dissertations--Electrical and Computer Engineering

Focused electron beam induced processing (FEBIP) is a nano-scale fabrication technique that allows the direct deposition of functional materials. However, it suffers from significant drawbacks, such as high cost, low speed, unavailable precursors for many materials and low purity of deposits. Liquid-phase focused electron beam induced processes (LP-FEBIP) are being investigated due to the potential benefits over the gas phase technique. In this method, deposition or etching occurs at the interface between a substrate and a bulk liquid. In this work, electron beam induced deposition of copper nanostructures from aqueous solutions of copper sulfate is demonstrated. The addition of sulfuric …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation …


Fabrication And Characterization Of Planar-Structure Perovskite Solar Cells, Guoduan Liu Jan 2019

Fabrication And Characterization Of Planar-Structure Perovskite Solar Cells, Guoduan Liu

Theses and Dissertations--Electrical and Computer Engineering

Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising photovoltaic technology due to low production cost, easy fabrication method and high power conversion efficiency.

Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) Oxide) possesses several advantages such as higher mobility and better energy level alignment. In addition, PSCs with planar structure can be processed at lower temperature compared to PSCs with …


Energy Efficient Spintronic Device For Neuromorphic Computation, Md Ali Azam Jan 2019

Energy Efficient Spintronic Device For Neuromorphic Computation, Md Ali Azam

Theses and Dissertations

Future computing will require significant development in new computing device paradigms. This is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann architectures as well as the energy constraints of wearable technologies and embedded processors. The first device proposal, an energy-efficient voltage-controlled domain wall device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling. By controlling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction (DMI), different positions of the domain wall are realized …


Thin Film Based Biosensors For Point Of Care Diagnosis Of Cortisol, Syed Khalid Pasha Nov 2018

Thin Film Based Biosensors For Point Of Care Diagnosis Of Cortisol, Syed Khalid Pasha

FIU Electronic Theses and Dissertations

This dissertation explores the different ways to create thin film-based biosensors that are capable of rapid and label-free detection of cortisol, a non-specific biomarker closely linked to stress, within the physiological range of 10pM to 10 uM. Increased cortisol levels have been linked to stress-related diseases, such as chronic fatigue syndrome, irritable bowel syndrome, and post-traumatic stress disorder. It also plays a role in the suppression of the immune system as well. Therefore, accurate measurement of cortisol in saliva, serum, plasma, urine, sweat, and hair, is clinically significance to predict physical and mental diseases.

In this dissertation, thin film-based electrochemical …


Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal Nov 2018

Multivariate Analysis For The Quantification Of Transdermal Volatile Organic Compounds In Humans By Proton Exchange Membrane Fuel Cell System, Ahmed Hasnain Jalal

FIU Electronic Theses and Dissertations

In this research, a proton exchange membrane fuel cell (PEMFC) sensor was investigated for specific detection of volatile organic compounds (VOCs) for point-of-care (POC) diagnosis of the physiological conditions of humans. A PEMFC is an electrochemical transducer that converts chemical energy into electrical energy. A Redox reaction takes place at its electrodes whereas the volatile biomolecules (e.g. ethanol) are oxidized at the anode and ambient oxygen is reduced at the cathode. The compounds which were the focus of this investigation were ethanol (C2H5OH) and isoflurane (C3H2ClF5O), but theoretically, the sensor …


Hybrid Perovskite Characterization And Device Applications., Kasun Fernando Aug 2018

Hybrid Perovskite Characterization And Device Applications., Kasun Fernando

Electronic Theses and Dissertations

Hybrid perovskites are a group of materials that has shown a great impact in the field of scientific research in the past decade due to the efficiency gain within a short period of time. Hot casting is one technique that has been producing high efficient and stable solar cells. Electrical transportation of lateral device structure by such film is explored to understand basic properties and predict possible device applications using it. Under dark, memristive ability of the film was explored using various experiments. Unique uni-polar memristor ability was observed. Using the experimental results, a model is hypothesized using the concepts …


Power Dissipation Of Wse2 Field-Effect Transistors Probed By Low- Frequency Raman Thermometry, Zlatan Aksamija, Cameron J. Foss, Arnab K. Majee, Amin Salehi-Khojin Jun 2018

Power Dissipation Of Wse2 Field-Effect Transistors Probed By Low- Frequency Raman Thermometry, Zlatan Aksamija, Cameron J. Foss, Arnab K. Majee, Amin Salehi-Khojin

Zlatan Aksamija

The ongoing shrinkage in the size of two-dimensional (2D) electronic circuitry results in high power densities during device operation, which could cause a significant temperature rise within 2D channels. One challenge in
Raman thermometry of 2D materials is that the commonly used high-frequency modes do not precisely represent the temperature rise in some 2D materials because of peak broadening and intensity weakening at elevated temperatures. In this work, we show that a low-frequency E2g 2 shear mode can be used to accurately extract temperature and measure thermal boundary conductance (TBC) in backgated tungsten diselenide (WSe2) field-effect transistors, whereas the high-frequency …


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik May 2018

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the …