Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Controls and Control Theory

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon Oct 2023

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


Instrumented Control Column For Optionally Piloted Aircraft, Andrew J. Klein Jun 2023

Instrumented Control Column For Optionally Piloted Aircraft, Andrew J. Klein

Electrical Engineering

Natilus, an aerospace company that is rapid-prototyping optionally piloted aircraft (OPA) for the shipping industry, needs a system that retrieves control column position data in order to manipulate flight simulator parameters in software. At present, a universally compatible system for all aircraft does not exist. Typically, established aerospace companies will sink significant time and money into developing proprietary systems for control column data retrieval as every aircraft is unique in its layout and linkage design. However, as a startup developing their first aircraft, Natilus does not have the privilege of modifying an existing sensor system to work with their HIL …


Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham Dec 2020

Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham

Master's Theses

This thesis report investigates the effects of low Reynolds number on the power performance of a 3.74 m diameter horizontal axis wind turbine. The small wind turbine was field tested at the Cal Poly Wind Power Research Center to acquire its coefficient of performance, p, vs. tip speed ratio, λ, characteristics. A description of both the wind turbine and test setup are provided. Data filtration and processing techniques were developed to ensure a valid method to analyze and characterize wind power measurements taken in a highly variable environment. The test results demonstrated a significant drop in the …


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information …


Control System Infrastructure For The Cal Poly Human Powered Helicopter: Upturn Ii, Douglas A. Thornber, Samuel J. Wahyou Jun 2013

Control System Infrastructure For The Cal Poly Human Powered Helicopter: Upturn Ii, Douglas A. Thornber, Samuel J. Wahyou

Aerospace Engineering

The Upturn was donated to Cal Poly in October 2012 by Neal Saiki from NTS. Our project was to replicate the old system to decrease the turn-around time in case of a crash during a test flight. The control system for the Upturn II was designed with the same considerations that were used for the Upturn. The result we got was inconclusive for the sensor selection, the new control system is heavier than the old system, and we couldn’t validate the system without doing a flight test. For the next iteration if some of the replication requirements are relaxed the …


Low-Cost Imu Implementation Via Sensor Fusion Algorithms In The Arduino Environment, Brandon Mccarron Jun 2013

Low-Cost Imu Implementation Via Sensor Fusion Algorithms In The Arduino Environment, Brandon Mccarron

Aerospace Engineering

A multi-phase experiment was conducted at Cal Poly in San Luis Obispo, CA, to design a low-cost inertial measurement unit composed of a 3-axis accelerometer and 3-axis gyroscope. Utilizing the growing microprocessor software environment, a 3-axis accelerometer and 3-axis gyroscope simulated 6 degrees of freedom orientation sensing through sensor fusion. By analyzing a simple complimentary filter and a more complex Kalman filter, the outputs of each sensor were combined and took advantage of the benefits of both sensors to improved results. Gyroscopic drift was removed in the pitch and roll axes using the Kalman filter for both static and dynamic …


Aether, Thomas Cameron, Kristine Colton, Daren Childers Jan 2011

Aether, Thomas Cameron, Kristine Colton, Daren Childers

Electrical Engineering

Aether is a RC-style autonomous air vehicle that utilizes GPS positioning along with a wireless communication system to achieve a computer-controlled flight.

This report will incorporate the acquisition, design, integration, implementation and testing phases of the UAV development. Furthermore a discussion of troubleshooting as well as improvements for future projects will be included.


Modeling Of A Gyro-Stabilized Helicopter Camera System Using Neural Networks, Nicholas Joseph Layshot Dec 2010

Modeling Of A Gyro-Stabilized Helicopter Camera System Using Neural Networks, Nicholas Joseph Layshot

Master's Theses

On-board gimbal systems for camera stabilization in helicopters are typically based on linear models. Such models, however, are inaccurate due to system nonlinearities and complexities. As an alternative approach, artificial neural networks can provide a more accurate model of the gimbal system based on their non-linear mapping and generalization capabilities.

This thesis investigates the applications of artificial neural networks to model the inertial characteristics (on the azimuth axis) of the inner gimbal in a gyro-stabilized multi-gimbal system. The neural network is trained with time-domain data obtained from gyro rate sensors of an actual camera system. The network performance is evaluated …