Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 86

Full-Text Articles in Robotics

Implementation Of Path Planning Methods To Detect And Avoid Gps Signal Degradation In Urban Environments, Ayush Raminedi Apr 2024

Implementation Of Path Planning Methods To Detect And Avoid Gps Signal Degradation In Urban Environments, Ayush Raminedi

Doctoral Dissertations and Master's Theses

In the modern world, various missions are being carried out under the assistance of autonomous flight vehicles due to their ability to operate in a wide range of flight conditions. Regardless, these autonomous vehicles are prone to GPS signal loss in urban environments due to obstructions that cause scintillation, multi-path, and shadowing. These effects that decrease the GPS functionality can deteriorate the accuracy of GPS positioning causing losses in signal tracking leading to a decrease in navigation performance. These effects are modeled into the simulation environment and are used as part of the path planning algorithm to provide better navigation …


State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays Apr 2024

State Omniscience For Cooperative Local Catalog Maintenance Of Close Proximity Satellite Systems, Chris Hays

Doctoral Dissertations and Master's Theses

Resiliency in multi-agent system navigation is reliant on the inherent ability of the system to withstand, overcome, or recover from adverse conditions and disturbances. In large part, resiliency is achieved through reducing the impact of critical failure points to the success and/or performance of the system. In this view, decentralized multi-agent architectures have become an attractive solution for multi-agent navigation, but decentralized architectures place the burden of information acquisition directly on the agents themselves. In fact, the design of distributed estimators has been a growing interest to enable complex multi-sensor/multi-agent tasks. In such scenarios, it is important that each local …


Efficient Connectivity Management And Path Planning For Iot And Uav Networks, Amirahmad Chapnevis Jan 2024

Efficient Connectivity Management And Path Planning For Iot And Uav Networks, Amirahmad Chapnevis

Theses and Dissertations

This dissertation explores how to better manage resources in mobile networks, especially for enhancing the performance of Unmanned Aerial Vehicles (UAV)-supported IoT networks. We explored ways to set up a flexible communication architecture that can handle large IoT deployments by making good use of mobile core network resources like bearers and data paths. We developed strategies that meet the needs of IoT networks and enhance network performance. We also developed and tested a system that combines traffic from several mobile devices that use the same user identity and network resources within the core mobile network. We used everyday smartphones, SIM …


Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Nov 2023

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

Machine learning regression techniques have shown success at feedback control to perform near-optimal pinpoint landings for low fidelity formulations (e.g. 3 degree-of-freedom). Trajectories from these low-fidelity landing formulations have been used in imitation learning techniques to train deep neural network policies to replicate these optimal landings in closed loop. This study details the development of a near-optimal, neural network feedback controller for a 6 degree-of-freedom pinpoint landing system. To model disturbances, the problem is cast as either a multi-phase optimal control problem or a triple single-phase optimal control problem to generate examples of optimal control through the presence of disturbances. …


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Oct 2023

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi Aug 2023

Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi

Mechanical & Aerospace Engineering Theses & Dissertations

In time-sensitive search and rescue applications, a team of multiple mobile robots broadens the scope of operational capabilities. Scaling multi-robot systems (< 10 agents) to larger robot teams (10 – 100 agents) using centralized coordination schemes becomes computationally intractable during runtime. One solution to this problem is inspired by swarm intelligence principles found in nature, offering the benefits of decentralized control, fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses on searching for multiple targets. This thesis presents GPR-GSO—a modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven predictive modeling—to improve the search efficiency of robotic swarms in multiple emission source localization tasks. The problem formulation and methods are presented, followed by numerical simulations to illustrate the working of the algorithm. Results from a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, and travel distance.


Accurate Indoor Navigation System Based On Imu/Lp-Mm Integrated Method Using Kalman Filter Algorithm, Abdullah Mohammed Bahasan Mar 2023

Accurate Indoor Navigation System Based On Imu/Lp-Mm Integrated Method Using Kalman Filter Algorithm, Abdullah Mohammed Bahasan

Hadhramout University Journal of Natural & Applied Sciences

Abstract

The demand for navigation systems is rapidly increasing, especially in indoor environments which the signal of GPS is not available. Therefore the Inertial Measurement Unit (IMU) system is a suitable navigation system in such indoor environments. It usually consists of three accelerometers and three gyroscopes to determine position, velocity and attitude information, respectively, without need of any external source. But this type of navigation systems has errors growth with time due to accelerometers and gyroscopes drifts. This paper introduces indoor navigation system based on integrated IMU navigation system with proposed system called Landmarks Points-Map Matching (LP-MM) system using Kalman …


Alternatives To Reducing Aviation Fuel-Burn With Technology: Fully Electric Autonomous Taxibot, Denzil Neo Jan 2023

Alternatives To Reducing Aviation Fuel-Burn With Technology: Fully Electric Autonomous Taxibot, Denzil Neo

Student Works

Aircraft taxiing operations in the aerodrome were identified to consume the most jet fuel apart from the cruise phase of the flight. This was also well supported by various research associating taxi operations at large, congested airports, with high jet fuel consumption, high carbon emissions, and noise pollution. Existing literature recognised the potential to address the environmental issues of aerodrome taxi operations by operating External or Onboard Aircraft Ground Propulsion Systems (AGPS). Designed to power aircraft with sources other than their main engines, external Aircraft Ground Power Systems (AGPS) have shown the potential to significantly cut jet fuel consumption and …


Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty Jan 2023

Space Force Design Project, Emily Greene, Ashton Orosa, Julia Patek, Nathan Doty

Williams Honors College, Honors Research Projects

The objective of our research project is to develop a lab testbed composed of a curved surface to represent a spacecraft hull, a mobile robot equipped with repair tools, and a robotic arm equipped with a laser 3D scanner. This project is part of a larger grant to the University of Akron from Space Force and Air Research Labs. The lab testbed developed in this project will be used to assist in creating and testing a software and algorithm to inspect and repair spacecraft while in orbit. The project will involve researching spacecraft hulls to create an accurate simulation bed, …


Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior Jan 2023

Motion Planning In Artificial And Natural Vector Fields, Bernardo Martinez Rocamora Junior

Graduate Theses, Dissertations, and Problem Reports

This dissertation advances the field of autonomous vehicle motion planning in various challenging environments, ranging from flows and planetary atmospheres to cluttered real-world scenarios. By addressing the challenge of navigating environmental flows, this work introduces the Flow-Aware Fast Marching Tree algorithm (FlowFMT*). This algorithm optimizes motion planning for unmanned vehicles, such as UAVs and AUVs, navigating in tridimensional static flows. By considering reachability constraints caused by vehicle and flow dynamics, flow-aware neighborhood sets are found and used to reduce the number of calls to the cost function. The method computes feasible and optimal trajectories from start to goal in challenging …


Certification Basis For A Fully Autonomous Uncrewed Passenger Carrying Urban Air Mobility Aircraft, Steve Price Dec 2022

Certification Basis For A Fully Autonomous Uncrewed Passenger Carrying Urban Air Mobility Aircraft, Steve Price

Student Works

The Urban Air Mobility campaign has set a goal to efficiently transport passengers and cargo in urban areas of operation with autonomous aircraft. This concept of operations will require aircraft to utilize technology that currently does not have clear regulatory requirements. This report contains a comprehensive analysis and creation of a certification basis for a fully autonomous uncrewed passenger carrying rotorcraft for use in Urban Air Mobility certified under Title 14 Code of Federal Regulations Part 27. Part 27 was first analyzed to determine the applicability of current regulations. The fully electric propulsion system and fully autonomous flight control system …


Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer Dec 2022

Actively Guided Cansats For Assisting Localization And Mapping In Unstructured And Unknown Environments, Cary Chun, M. Hassan Tanveer

Symposium of Student Scholars

When navigating in unknown and unstructured environments, Unmanned Arial Vehicles (UAVs) can struggle when attempting to preform Simultaneous Localization and Mapping (SLAM) operations. Particularly challenging circumstance arise when an UAV may need to land or otherwise navigate through treacherous environments. As the primary UAV may be too large and unwieldly to safely investigate in these types of situations, this research effort proposes the use of actively guided CanSats for assisting in localization and mapping of unstructured environments. A complex UAV could carry multiple of these SLAM capable CanSats, and when additional mapping and localization capabilities where required, the CanSat would …


Unmanned Aerial System Design For Civil Engineering Operations – A Vip Study, Ezra Robles, Harrison Vicknair, Derek Price, Logan Westra, George Pitcock, Joshua Diamond, Bhuvan Saraswat, Jeremiah Prayor, Fon Saliki Dec 2022

Unmanned Aerial System Design For Civil Engineering Operations – A Vip Study, Ezra Robles, Harrison Vicknair, Derek Price, Logan Westra, George Pitcock, Joshua Diamond, Bhuvan Saraswat, Jeremiah Prayor, Fon Saliki

Symposium of Student Scholars

Unmanned Aerial System Design for Civil Engineering Operations – A Case Study

The objective of the project is to design and build a modular Unmanned Aerial System (UAS) that meets the specifications set forth by United Consulting – a local civil engineering company. These specifications are achieved through three unique missions. In each mission, data is collected using different methods. These missions include land surveying, bridge structure inspection and manhole probing. The key requirements of the drone are to maintain a minimum flight time of 30 minutes and the ability to receive and transmit telemetry, photographic and video data from …


Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng Nov 2022

Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng

All Dissertations

Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies …


Low-Cost Uav Swarm For Real-Time Object Detection Applications, Joel Valdovinos Miranda Jun 2022

Low-Cost Uav Swarm For Real-Time Object Detection Applications, Joel Valdovinos Miranda

Master's Theses

With unmanned aerial vehicles (UAVs), also known as drones, becoming readily available and affordable, applications for these devices have grown immensely. One type of application is the use of drones to fly over large areas and detect desired entities. For example, a swarm of drones could detect marine creatures near the surface of the ocean and provide users the location and type of animal found. However, even with the reduction in cost of drone technology, such applications result costly due to the use of custom hardware with built-in advanced capabilities. Therefore, the focus of this thesis is to compile an …


A Brief Literature Review For Machine Learning In Autonomous Robotic Navigation, Jake Biddy, Jeremy Evert Apr 2022

A Brief Literature Review For Machine Learning In Autonomous Robotic Navigation, Jake Biddy, Jeremy Evert

Student Research

Machine learning is becoming very popular in many technological aspects worldwide, including robotic applications. One of the unique aspects of using machine learning in robotics is that it no longer requires the user to program every situation. The robotic application will be able to learn and adapt from its mistakes. In most situations, robotics using machine learning is designed to fulfill a task better than a human could, and with the machine learning aspect, it can function at the highest level of efficiency and quality. However, creating a machine learning program requires extensive coding and programming knowledge that can be …


Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay Jan 2022

Formation Control With Bounded Controls And Collision Avoidance: Theory And Application To Quadrotor Unmanned Air Vehicles, Zachary S. Lippay

Theses and Dissertations--Mechanical Engineering

This dissertation presents new results on multi-agent formation control and applies the new control algorithms to quadrotor unmanned air vehicles. First, this dissertation presents a formation control algorithm for double-integrator agents, where the formation is time varying and the agents’ controls satisfy a priori bounds (e.g., the controls accommodate actuator saturation). The main analytic results provide sufficient conditions such that all agents converge to the desired time-varying relative positions with one another and the leader, and have a priori bounded controls (if applicable). We also present results from rotorcraft experiments that demonstrate the algorithm with time-varying formations and bounded controls. …


Developing Reactive Distributed Aerial Robotics Platforms For Real-Time Contaminant Mapping, Joshua Ashley Jan 2022

Developing Reactive Distributed Aerial Robotics Platforms For Real-Time Contaminant Mapping, Joshua Ashley

Theses and Dissertations--Electrical and Computer Engineering

The focus of this research is to design a sensor data aggregation system and centralized sensor-driven trajectory planning algorithm for fixed-wing aircraft to optimally assist atmospheric simulators in mapping the local environment in real-time. The proposed application of this work is to be used in the event of a hazardous contaminant leak into the atmosphere as a fleet of sensing unmanned aerial vehicles (UAVs) could provide valuable information for evacuation measures. The data aggregation system was designed using a state-of-the-art networking protocol and radio with DigiMesh and a process/data management system in the ROS2 DDS. This system was tested to …


Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang Jan 2021

Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as "fingerprint" matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the …


Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic Jan 2021

Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic

Graduate Theses, Dissertations, and Problem Reports

Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other …


Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader Jan 2021

Active Localization For Robotic Systems: Algorithms And Cost Metrics, Jared Strader

Graduate Theses, Dissertations, and Problem Reports

In the real world, a robotic system must operate in the presence of motion and sensing uncertainty. This is caused by the fact that the motion of a robotic system is stochastic due to disturbances from the environment, and the states are only partially observable due noise in the sensor measurements. As a result, the true state of a robotic system is unknown, and estimation techniques must be used to infer the states from the belief, which is the probability distribution over all possible states. Accordingly, a robotic system must be capable of reasoning about the quality of the belief …


Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu Oct 2020

Finite-Time State Estimation For An Inverted Pendulum Under Input-Multiplicative Uncertainty, Sergey V. Drakunov, William Mackunis, Anu Kossery Jayaprakash, Krishna Bhavithavya Kidambi, Mahmut Reyhanoglu

Publications

A sliding mode observer is presented, which is rigorously proven to achieve finite-time state estimation of a dual-parallel underactuated (i.e., single-input multi-output) cart inverted pendulum system in the presence of parametric uncertainty. A salient feature of the proposed sliding mode observer design is that a rigorous analysis is provided, which proves finite-time estimation of the complete system state in the presence of input-multiplicative parametric uncertainty. The performance of the proposed observer design is demonstrated through numerical case studies using both sliding mode control (SMC)- and linear quadratic regulator (LQR)-based closed-loop control systems. The main contribution presented here is the rigorous …


Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak Jan 2020

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak

Graduate Theses, Dissertations, and Problem Reports

Practical decision makers are inherently limited by computational and memory resources as well as the time available in which to make decisions. To cope with these limitations, humans actively seek methods which limit their resource demands by exploiting structure within the environment and exploiting a coupling between their sensing and actuation to form heuristics for fast decision-making. To date, such behavior has not been replicated in artificial agents. This research explores how heuristics may be incorporated into the decision-making process to quickly make high-quality decisions through the analysis of a prominent case study: the outfielder problem. In the outfielder problem, …


A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen Nov 2019

A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to …


Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed Jul 2019

Nonlinear Attitude And Pose Filters With Superior Convergence Properties, Hashim Abdellah Hashim Mohamed

Electronic Thesis and Dissertation Repository

In this thesis, several deterministic and stochastic attitude filtering solutions on the special orthogonal group SO(3) are proposed. Firstly, the attitude estimation problem is approached on the basis of nonlinear deterministic filters on SO(3) with guaranteed transient and steady-state measures. The second solution to the attitude estimation problem considers nonlinear stochastic filters on SO(3) with superior convergence properties with two filters being developed in the sense of Ito, and one in the sense of Stratonovich.

This thesis also presents several deterministic and stochastic pose filtering solutions developed on the special Euclidean group SE(3). The first solution includes two nonlinear deterministic …


Nonlinear Observer For Visual-Inertial Navigation Using Intermittent Landmark Measurements, Miaomiao Wang Jun 2019

Nonlinear Observer For Visual-Inertial Navigation Using Intermittent Landmark Measurements, Miaomiao Wang

Western Research Forum

The development of reliable orientation, position and linear velocity estimation algorithms for the 3D visual-inertial navigation system (VINS) is instrumental in many applications, such as autonomous underwater vehicles (AUVs), and unmanned aerial vehicles (UAVs). It is extremely important when the global position system (GPS) is not available in GPS-denied environments. Recently, observers design for VINS using landmark position measurements from Kinect sensors or stereo cameras has been increasingly investigated in the literature.

The aim of this work is to design a nonlinear observer for VINS under the assumption that landmark position measurements are intermittent. In practice, the landmark measurements are …


Autonomous Watercraft Simulation And Programming, Nicholas J. Savino Apr 2019

Autonomous Watercraft Simulation And Programming, Nicholas J. Savino

Student Scholar Showcase

Automation of various modes of transportation is thought to make travel more safe and efficient. Over the past several decades, advances to semi-autonomous and autonomous vehicles have led to advanced autopilot systems on planes and boats, and an increasing popularity of self-driving cars. We predicted the motion of an autonomous vehicle using simulations in Python. The simulation models the motion of a small scale watercraft, which can then be built and programmed using an Arduino Microcontroller. We examined different control methods for a simulated rescue craft to reach a target. We also examined the effects of different factors, such as …