Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 4387

Full-Text Articles in Engineering

Magnetization And Age Of Ca. 544 Ma Syenite, Eastern Canada: Evidence For Renewal Of The Geodynamo, Tinghong Zhou, Mauricio Ibañez-Mejia, Richard K. Bono, Rory D. Cottrell, Wouter Bleeker, Kenneth P. Kodama, Wentao Huang, Eric G. Blackman, Francis Nimmo, Aleksey Smirnov, John A. Tarduno Aug 2024

Magnetization And Age Of Ca. 544 Ma Syenite, Eastern Canada: Evidence For Renewal Of The Geodynamo, Tinghong Zhou, Mauricio Ibañez-Mejia, Richard K. Bono, Rory D. Cottrell, Wouter Bleeker, Kenneth P. Kodama, Wentao Huang, Eric G. Blackman, Francis Nimmo, Aleksey Smirnov, John A. Tarduno

Michigan Tech Publications, Part 2

The ca. 565 Ma Ediacaran geodynamo was highly unusual, producing an ultralow field 10 times weaker than present-day value of 8 x 1022 A m2. A ∼5 times rise in field strength is seen in time-averaged single crystal paleointensity data of ca. 532 Ma Early Cambrian anorthosites of Oklahoma (USA). The field increase could record the onset of inner core nucleation predicted by thermal evolution and numerical dynamo models. Here, we examine the renewal of the geodynamo through zircon U-Pb geochronology and single crystal paleointensity studies of plagioclase from the Chatham-Grenville syenite intrusion in the Grenville Province (Canada). U-Pb data …


Vysion Software, Isaias Hernandez-Dominguez Jr, Chander Luderman Miller Jul 2024

Vysion Software, Isaias Hernandez-Dominguez Jr, Chander Luderman Miller

2024 Symposium

Vision loss presents significant challenges in daily life. Existing solutions for blind and visually impaired individuals are often limited in functionality, expensive, or complex to use. Vysion Software addresses this gap by developing a user-friendly, all-in-one AI companion app that provides features including text summarization, real-time audio descriptions, and AI-enhanced navigation. This project details the development plan, initial functionalities, and future vision for Vysion Software.


Thermal Hydraulic Analysis For Different Subchannels Of Generic Vver-1200, Mosaddak Ahamed Zahid, Md. Imam Mehedi, Shamsul Arefin Shibly, A. S. Mollah Jul 2024

Thermal Hydraulic Analysis For Different Subchannels Of Generic Vver-1200, Mosaddak Ahamed Zahid, Md. Imam Mehedi, Shamsul Arefin Shibly, A. S. Mollah

International Journal of Nuclear Security

The demand for nuclear energy is steadily increasing all over the world. Most nuclear power is used for peaceful applications such as power generation, healthcare, agriculture, food security, industry, and research. One of the primary applications of nuclear energy is the generation of electricity through nuclear power plants based on nuclear reactors. Many developing countries around the world (such as Bangladesh) are moving toward nuclear power plants because they have huge advantages, including low-cost energy, reliable energy sources, zero carbon emissions, and high energy concentration. As a result, the demand for nuclear reactor protection and operational protection of nuclear power …


A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus May 2024

A Computational Investigation Of Wood Selection For Acoustic Guitar, Jonah Osterhus

Senior Honors Theses

The acoustic guitar is a stringed instrument, often made of wood, that transduces vibrational energy of steel strings into coupled vibrations of the wood and acoustic pressure waves in the air. Variations in wood selection and instrument geometry have been shown to affect the timbre of the acoustic guitar. Computational methods were utilized to investigate the impact of material properties on acoustic performance. Sitka spruce was deemed the most suitable wood for guitar soundboards due to its acoustic characteristics, strength, and uniform aesthetic. Mahogany was deemed to be the best wood for the back and sides of the guitar body …


New Frontier In Race For Deep Space Exploration: Lunar Water Resources, Yong Wei, Honglei Lin, Fei He, Hui Zhang May 2024

New Frontier In Race For Deep Space Exploration: Lunar Water Resources, Yong Wei, Honglei Lin, Fei He, Hui Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

Deep space exploration has become the commanding heights of science and technology competition. Since the beginning of the 21st century, China has successfully completed the lunar exploration missions of “orbiting, landing, and returning” in just twenty years, and upgraded to a new roadmap of “survey, construction, and utilization”. Meanwhile, lunar exploration worldwide has shown a trend towards normalization and commercialization. The research on lunar water resources has sparked widespread interest and intense competition among countries and space agencies, marking a new focus in human’s deep space exploration. The exploration of lunar water can help reveal crucial processes in the formation …


Winning Battle For Key And Core Technologies In Emerging Fields—Inspiration Based On 863 Program Related Projects, Guangzu Bai, Li Li, Hongfei Meng, Qiang Wang, Xiaoyang Cao, Anrong Liu, Bo Cheng, Mimi Zhan, Jing Li, Leiei Cui, Xiangwan Du May 2024

Winning Battle For Key And Core Technologies In Emerging Fields—Inspiration Based On 863 Program Related Projects, Guangzu Bai, Li Li, Hongfei Meng, Qiang Wang, Xiaoyang Cao, Anrong Liu, Bo Cheng, Mimi Zhan, Jing Li, Leiei Cui, Xiangwan Du

Bulletin of Chinese Academy of Sciences (Chinese Version)

Emerging technology fields have become the main battleground for strategic competition among major powers today, with key and core technologies serving as crucial approach in shaping a nation’s international competitive advantage. This study, from the perspective of national strategy, profoundly understands the significant importance of winning the key and core technology battle in emerging fields. Based on this understanding, it starts with a comparison between the implementation background of the 863 Program and the current reality. It systematically summarizes valuable experiences from projects aimed at advancing key and core technologies in emerging fields, and puts forward reflections and suggestions for …


Integration Of The Ashby Technique And Pahl-Beitz Quantitative Ranking For Railway Axle Material Selection, Helya Chafshoh Nafisah, Jaka Fajar Fatriansyah, Siti Norasmah Surip May 2024

Integration Of The Ashby Technique And Pahl-Beitz Quantitative Ranking For Railway Axle Material Selection, Helya Chafshoh Nafisah, Jaka Fajar Fatriansyah, Siti Norasmah Surip

Journal of Materials Exploration and Findings

Railway axle serves as a vital connection between the train's wheels and its body. However, cyclic loading and high speed can induce fatigue in railway axle, which potentially leads to damage human safety. Therefore, it is important to find materials that have good mechanical properties with the lowest weight and cost. In this paper, a comprehensive method using Ashby chart has been performed to select candidate materials of railway axle. The methods begin with analyzing function by determining the problem, objective function, and constraints. After that, the results obtained are ranked using Pahl and Beitz quantitative weighting method. The results …


Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani May 2024

Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani

Journal of Materials Exploration and Findings

In the industrial world, to extend the service life of materials, protection methods are carried out to slow down the material's corrosion rate. The protection method that is often used is the coating method. The coating method is a protection method by coating the substrate material using a coating material to prevent contact between the substrate material and the environment. In this research, the substrate material used is ASTM A36 steel and the coating material used is Surface Tolerant Epoxy paint. The independent variable used in this study lies in the surface preparation method which consists of: solvent cleaning, hand …


Effects Of Ti Addition On The Characteristics Of Al-10zn-6mg-2si/Zro2 Composites Produced By Squeeze Casting, Qesha Diva Prameshvara, Pipin Indah Lestari, Bondan Tiara Sofyan May 2024

Effects Of Ti Addition On The Characteristics Of Al-10zn-6mg-2si/Zro2 Composites Produced By Squeeze Casting, Qesha Diva Prameshvara, Pipin Indah Lestari, Bondan Tiara Sofyan

Journal of Materials Exploration and Findings

Metal matrix composite (MMC) with 7xxx aluminum matrix is potential for ballistic applications due to the combination of strength, toughness, and light weight. Previous study successfully produced aluminum-based composites with SiC particles which were able to stop type III bullet, however cracks remained on back of the plate. Therefore, in this research, SiC was replaced by zirconia (ZrO2) due to its high fracture toughness. Ti-B grain refiner was added to further improve toughness through grain boundary strengthening mechanism. This research developed 5 vol.% ZrO2 strengthened Al-10Zn-6Mg-2Si composite with addition of Al-5Ti-1B grain refiner produced through squeeze casting …


Signal Processing Algorithms For Doppler Lidar Sensors, Samantha Grubb May 2024

Signal Processing Algorithms For Doppler Lidar Sensors, Samantha Grubb

Physics and Astronomy Honors Papers

Light detection and ranging (LiDAR) is a remote sensing technology that obtains relative distance and velocity measurements between a sensor and a defined target by using light transmitted and received from the target. FMCW Doppler LiDAR, a particular variant of LiDAR, functions by analyzing the frequency shift in the reflected light to determine the target's range and velocity. This technology plays a crucial role across various sectors including defense, aerospace, and automotive. This paper presents signal processing algorithms designed to optimize data obtained from Doppler LiDAR sensors. By applying various window functions to time domain data, the Signal-to-Noise Ratio (SNR) …


Near-Collapse Of The Geomagnetic Field May Have Contributed To Atmospheric Oxygenation And Animal Radiation In The Ediacaran Period, Wentao Huang, John A. Tarduno, Tinghong Zhou, Mauricio Ibañez-Mejia, Laércio Dal Olmo-Barbosa, Edinei Koester, Eric G. Blackman, Aleksey V. Smirnov, Gabriel Ahrendt, Rory D. Cottrell, Kenneth P. Kodama, Richard K. Bono, David G. Sibeck, Yong Xiang Li, Francis Nimmo, Shuhai Xiao, Michael K. Watkeys May 2024

Near-Collapse Of The Geomagnetic Field May Have Contributed To Atmospheric Oxygenation And Animal Radiation In The Ediacaran Period, Wentao Huang, John A. Tarduno, Tinghong Zhou, Mauricio Ibañez-Mejia, Laércio Dal Olmo-Barbosa, Edinei Koester, Eric G. Blackman, Aleksey V. Smirnov, Gabriel Ahrendt, Rory D. Cottrell, Kenneth P. Kodama, Richard K. Bono, David G. Sibeck, Yong Xiang Li, Francis Nimmo, Shuhai Xiao, Michael K. Watkeys

Michigan Tech Publications, Part 2

Earth’s magnetic field was in a highly unusual state when macroscopic animals of the Ediacara Fauna diversified and thrived. Any connection between these events is tantalizing but unclear. Here, we present single crystal paleointensity data from 2054 and 591 Ma pyroxenites and gabbros that define a dramatic intensity decline, from a strong Proterozoic field like that of today, to an Ediacaran value 30 times weaker. The latter is the weakest time-averaged value known to date and together with other robust paleointensity estimates indicate that Ediacaran ultra-low field strengths lasted for at least 26 million years. This interval of ultra-weak magnetic …


Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Physics Undergraduate Honors Theses

Mechanical Exfoliation


Geomagnetic Substorms Prediction Model Using Combined Physics-Based And Deep Learning Modeling Techniques, Ruthba Yasmin May 2024

Geomagnetic Substorms Prediction Model Using Combined Physics-Based And Deep Learning Modeling Techniques, Ruthba Yasmin

<strong> Theses and Dissertations </strong>

This thesis aims to develop a hybrid physics-incorporated neural network model (PINN) for classifying geomangnetic substorms in Earth's Magnetosphere. The model is trained using a comprehensive list of substorm onsets, ground magentometer data from a global network, and solar wind parameters from the Advanced Composition Explorer (ACE) satellite. Two different neural network architectures are used, and the physics model used for training is called WINDMI. The magnetic field components on the ground, which are a function of the ionospheric currents, are captured by the SML index. The methodology involves using 60-minute data segments preceding an event to train the hybrid …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Physics Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Mechanical Engineering Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Blade Design And Validation Of Hydrokinetic Turbine To Harvest Water Current Energy, Setare Sadeqi May 2024

Blade Design And Validation Of Hydrokinetic Turbine To Harvest Water Current Energy, Setare Sadeqi

University of New Orleans Theses and Dissertations

The innovative aspect of this research lies in the careful integration of cutting-edge technologies throughout the entire process of designing, fabricating, and testing the carbon fiber propeller for the 3-bladed horizontal axis ocean current turbine (OCT). SolidWorks software played a pivotal role in the initial design phase, enabling a meticulous and precise modeling of the propeller's geometry. The utilization of SolidWorks allowed for a detailed exploration of various design parameters, ensuring that the propeller's structure and form were optimized for performance in ocean current conditions. Moving beyond the realm of virtual design, the choice of carbon fiber as the fabrication …


Towing Tank Trials Of Hydrokinetic Turbine Scale Model To Support Marine Energy System Verification, Shahab Rouhi May 2024

Towing Tank Trials Of Hydrokinetic Turbine Scale Model To Support Marine Energy System Verification, Shahab Rouhi

University of New Orleans Theses and Dissertations

In response to the escalating demand for sustainable energy solutions and the critical reevaluation of conventional fossil fuels due to environmental concerns, this dissertation embarks on a comprehensive exploration of hydrokinetic energy as a promising alternative. The study delves into the underexplored domain of hydrokinetic energy, leveraging innovative methodologies for effective utilization and harnessing, particularly through the development and investigation of hydrokinetic turbines.

In the realm of hydrokinetic energy conversion, our research has exclusively concentrated on horizontal-axis turbines, distinct from other turbine configurations. Noteworthy is the adaptation of a conventional horizontal-axis wind turbine for water currents, revealing enhanced performance through …


Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao May 2024

Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao

All Dissertations

This thesis presents the comprehensive design, fabrication, and demonstration of advanced high-power, high-efficiency single-mode semiconductor lasers operating at a wavelength of 9xxnm. We begin with the design of the laser epitaxial structure, serving as the cornerstone for achieving high-power high-efficiency lasers. Our methodology integrates a semi-analytical calculation model, which accounts for Longitudinal Spatial Hole Burning (LSHB) and Two-Photon Absorption (TPA) effects, facilitating a thorough exploration of how design parameters influence output power and conversion efficiency. This approach offers an effective and time-efficient epitaxial structure optimization strategy compared to conventional full 3D simulation models.

Subsequently, we demonstrate high-power, high-efficiency ridge waveguide …


Oscillations Of Capillary Surfaces With Volume And Edge Effects, Dingqian Ding May 2024

Oscillations Of Capillary Surfaces With Volume And Edge Effects, Dingqian Ding

All Dissertations

Capillary surfaces are defined by an interface endowed with surface tension that is partially supported by a solid substrate and are susceptible to oscillations reflecting a balance between fluid inertia and the restorative force of surface tension. The wave dynamics strongly depend upon volume change within the domain and edge effects through the boundary conditions applied at the contact-line formed at the liquid-gas-solid interface, while the spatial wave structure conforms to the geometry of the capillary surface. This dissertation develops mathematical models to address these effects for several canonical capillary surfaces, which are organized into two parts that are focused …


Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei May 2024

Numerical Simulation Of Laser Induced Elastic Waves In Response To Short And Ultrashort Laser Pulses., Alireza Zarei

All Dissertations

In an era of intensified market competition, the demand for cost-effective, high-quality, high-performance, and reliable products continues to rise. Meeting this demand necessitates the mass production of premium products through the integration of cutting-edge technologies and advanced materials while ensuring their integrity and safety. In this context, Nondestructive Testing (NDT) techniques emerge as indispensable tools for guaranteeing the integrity, reliability, and safety of products across diverse industries.

Various NDT techniques, including ultrasonic testing, computed tomography, thermography, and acoustic emissions, have long served as cornerstones for inspecting materials and structures. Among these, ultrasonic testing stands out as the most prevalent method, …


Understanding The Impact Of Divertor And Main Chamber Ion Fluxes On Divertor Closure In The Diii-D Tokamak, Kirtan M. Davda May 2024

Understanding The Impact Of Divertor And Main Chamber Ion Fluxes On Divertor Closure In The Diii-D Tokamak, Kirtan M. Davda

Doctoral Dissertations

The diverted tokamak redirects extreme heat and particles to targets, a plasma-facing component designed for such loads. Here, the local fluxes produce strong particle recycling and sputtering. Recycled neutrals can “leak” into the region between the core and wall, the scrape-off-layer (SOL), impacting plasma performance. Increasing divertor closure can reduce leakage by containing neutrals within the divertor. However, there exists a need to quantify divertor baffle restrictions and understand closure directly from empirical data as opposed to indirectly through modeling.

Our study introduces the Geometric Restriction Parameter (GRP) based on simplifying neutral transport to ballistic pathways. Specifically, it considers the …


Experimental Quantum Key Distribution In Turbulent Channels, Kazi Mh Reaz May 2024

Experimental Quantum Key Distribution In Turbulent Channels, Kazi Mh Reaz

Doctoral Dissertations

Quantum Key Distribution (QKD) ensures security by relying on the laws of quantum physics rather than the mathematical intricacy of encryption algorithms. The transmission medium is a critical restricting factor for any quantum communication protocol. Fiber-based optical networks suffer great losses, making quantum communication impossible beyond metropolitan scales. Here free-space quantum communication can be a great alternative for long-distance communication. Even though modern Communications are mostly wireless the atmosphere poses a challenge for QKD. So QKD must be resistant to both atmospheric loss and variations in transmittance. In this thesis we conduct an experiment to strengthen the BB84 protocol's resistance …


Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang Apr 2024

Surface Treatments' Effects On The Capacitor's Dielectric Performance Under Electro-Thermal Stresses, Haider. M. Umran, Feipeng Wang

Karbala International Journal of Modern Science

Biaxial-oriented polypropylene (BOPP) films are characterized by unfavorable aging behavior because of their poor susceptibility to high temperatures, humidity, and high electric fields. This makes them unqualified to withstand harsh operating conditions, such as in capacitor applications. This study investigates the impact of annealing BOPP samples at 100 °C for five hours after fluorination at different times (15, 30, and 60 minutes) on their electrical and mechanical performance under electro-thermal stresses. Scanning electron microscope (SEM) images confirm that there is an increase in surface roughness and the formation of a dense layer of fluorine-containing groups monotonically with fluorination time. So, …


Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang Apr 2024

Thermal Performance Investigation Of Thermoelectric Cooling System With Various Hot-Side Cooling Methods, Bowo Y. Prasetyo, Parisya P. Rosulindo, Fujen Wang

Makara Journal of Technology

Thermoelectric devices have been widely used in various applications, including cooling and power generation. The potential application of thermoelectric cooling systems has been studied. However, these systems still face challenges in achieving optimal performance compared with other cooling systems. Several factors, including the hot-side cooling method, influence the performance of thermoelectric systems. This study aimed to investigate the effects of different hot-side cooling methods on the thermoelectric performance and thermal behavior of thermoelectric cooling systems. The testing methods involved the combination of the thermoelectric module with five hot-side heat exchangers, including a square heatsink, a round heatsink, a two-pipe heat …


Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti Apr 2024

Towards A Practical Method For Monitoring Kinetic Processes In Polymers With Low-Frequency Raman Spectroscopy, Robert Vito Chimenti

Theses and Dissertations

Unlike liquids and crystalline solids, glassy materials exist in a constant state of structural nonequilibrium. Therefore, a comprehensive understanding of material kinetics is critical for understanding the structure-property-processing relationships of polymeric materials. Amorphous materials universally display low-frequency Raman features related to the phonon density of states resulting in a broad disorder band for Raman shifts below 100 cm-1, which is related to the conformational entropy and the modulus. This disorder band is dominated by the Boson peak, a feature due to phonon scattering because of disorder and can be related to the transverse sound velocity of the material, and a …


Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo Apr 2024

Gate-Controlled Supercurrent Effect In Dry-Etched Dayem Bridges Of Non-Centrosymmetric Niobium Rhenium, Jennifer Koch, Carla Cirillo, Sebastiano Battisti, Leon Ruf, Zahra Makhdoumi Kakhaki, Alessandro Paghi, Armen Gulian, Serafim Teknowijoyo, Giorgio De Simoni, Francesco Giazotto, Carmine Attanasio, Elke Scheer, Angelo Di Bernardo

Mathematics, Physics, and Computer Science Faculty Articles and Research

The application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of …


Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle Apr 2024

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


Plasma Diagnostics For Anode Cathode Plasmas And High Energy Density Physics On A Linear Transformer Driver, Robert Beattie-Rossberg Apr 2024

Plasma Diagnostics For Anode Cathode Plasmas And High Energy Density Physics On A Linear Transformer Driver, Robert Beattie-Rossberg

Electrical and Computer Engineering ETDs

A twelve-brick air insulated linear transformer driver (LTD) was characterized by charging to voltages ranging from 30 to 70 kV and delivering energy to two separate resistive loads. Various plasma diagnostics were built and fielded with an emphasis on the design, implementation and analysis of a Mach Zehnder interferometer, a moiré deflectometer and a spectroscopy system providing information on the temporal evolution of plasma electron density and atomic composition. Rogowski coils, XRD radiation detectors, framing camera images and time integrated DSLR images are used to further understand load conditions where current data, x ray radiation data, velocity data and instability …