Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

812 Full-Text Articles 2,116 Authors 201,330 Downloads 63 Institutions

All Articles in Other Engineering Science and Materials

Faceted Search

812 full-text articles. Page 26 of 38.

The Effect Of Creasing Lines On The Compression Strength Of Adjustable Height Corrugated Boxes, Péter Csavajda, Péter Böröcz, Ákos Mojzes, Bence Molnár 2017 Széchenyi István University

The Effect Of Creasing Lines On The Compression Strength Of Adjustable Height Corrugated Boxes, Péter Csavajda, Péter Böröcz, Ákos Mojzes, Bence Molnár

Journal of Applied Packaging Research

Due to its high strength and low density, the corrugated fibreboard (CFB) box is one of the most popular types of packaging all over the world. This packaging device is able to fulfil a huge number of requirements of the logistic process, during the phases of handling, shipping and storage. In addition to this, corrugated packaging is easily machinable, so it is also suitable for special supply chains and products. These special needs include the requirement to fit to the inner measurements of the shipping device, e.g. the shipping container. This is particularly expected in case of less than container-load …


Dirichlet Process Gaussian Mixture Models For Real-Time Monitoring And Their Application To Chemical Mechanical Planarization, Jia (Peter) Liu, Omer F. Beyca, Prahalad K. Rao, Zhenyu (James) Kong, Satish T. S. Bukkapatnam 2017 Virginia Tech

Dirichlet Process Gaussian Mixture Models For Real-Time Monitoring And Their Application To Chemical Mechanical Planarization, Jia (Peter) Liu, Omer F. Beyca, Prahalad K. Rao, Zhenyu (James) Kong, Satish T. S. Bukkapatnam

Department of Mechanical and Materials Engineering: Faculty Publications

The goal of this work is to use sensor data for online detection and identification of process anomalies (faults). In pursuit of this goal, we propose Dirichlet process Gaussian mixture (DPGM) models. The proposed DPGM models have two novel outcomes: 1) DP-based statistical process control (SPC) chart for anomaly detection and 2) unsupervised recurrent hierarchical DP clustering model for identification of specific process anomalies. The presented DPGM models are validated using numerical simulation studies as well as wireless vibration signals acquired from an experimental semiconductor chemical mechanical planarization (CMP) test bed. Through these numerically simulated and experimental sensor data, we …


Vorticella: A Protozoan For Bio-Inspired Engineering, Sangjin Ryu, Rachel E. Pepper, Moeto Nagai, Danielle C. France 2017 University of Nebraska-Lincoln

Vorticella: A Protozoan For Bio-Inspired Engineering, Sangjin Ryu, Rachel E. Pepper, Moeto Nagai, Danielle C. France

Department of Mechanical and Materials Engineering: Faculty Publications

In this review, we introduce Vorticella as a model biological micromachine for microscale engineering systems. Vorticella has two motile organelles: the oral cilia of the zooid and the contractile spasmoneme in the stalk. The oral cilia beat periodically, generating a water flow that translates food particles toward the animal at speeds in the order of 0.1–1 mm/s. The ciliary flow of Vorticella has been characterized by experimental measurement and theoretical modeling, and tested for flow control and mixing in microfluidic systems. The spasmoneme contracts in a few milliseconds, coiling the stalk and moving the zooid at 15–90 mm/s. Because the …


Benchmark Burnishing With Almen Strip For Surface Integrity, Z. Y. Liu, C. H. Fu, M. P. Sealy, Y. Zhao, Y. B. Guo 2017 University of Alabama - Tuscaloosa

Benchmark Burnishing With Almen Strip For Surface Integrity, Z. Y. Liu, C. H. Fu, M. P. Sealy, Y. Zhao, Y. B. Guo

Department of Mechanical and Materials Engineering: Faculty Publications

Burnishing is a surface treatment process widely used in aerospace, navy and other industries to improve fatigue and corrosion resistance by introducing a compressive residual stress layer. The measurement of residual stress by XRD is expensive, time consuming, and tedious. This work presented a quick method to determine the residual stress by using Almen strips. Inspired by the application of Almen strips in shot peening, deflections of burnished Almen strips under different burnishing conditions were measured. It was found that the deflection of Almen strip reflects the magnitude and penetration depth into subsurface of induced stress. Higher burnishing force, smaller …


Methods , Systems , And Devices Relating To Surgical End Effectors, Shane M. Farritor, Tom Fredrick, Joe Bartels 2017 University of Nebraska-Lincoln

Methods , Systems , And Devices Relating To Surgical End Effectors, Shane M. Farritor, Tom Fredrick, Joe Bartels

Department of Mechanical and Materials Engineering: Faculty Publications

The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices, and more specifically including end effectors that can be incorporated into such devices. Certain end effector embodiments include various vessel cautery devices that have rotational movement as well as cautery and cutting functions while maintaining a relatively compact structure. Other end effector embodiments include various end effector devices that have more than one end effector.


Developing An Insider Threat Experimental Environment, Eric Ortiz 2017 University of Central Florida

Developing An Insider Threat Experimental Environment, Eric Ortiz

Electronic Theses and Dissertations

Simulated, 3D gaming environments have been used for a wide-range of applications including training, entertainment, and experimentation in an assortment of domains for some time. This can be attributed to their unique ability to emulate multifaceted situations that may be difficult to control, while affording participants the opportunity to operate in a relatively safe environment. In cybersecurity research, investigation of insider threat behavior is an endeavor that has received little attention in terms of available environments and resources for experimental manipulation. This research effort aimed to close this gap. A simulated, 3D gaming environment and accompanying scenarios were developed for …


Strained Hybrid Perovskite Thin Films And Their Impact On The Intrinsic Stability Of Perovskite Solar Cells, Jingjing Zhao, Yehao Deng, Haotong Wei, Xiaopeng Zheng, Zhenhua Yu, Yuchuan Shao, Jeffrey E. Shield, Jinsong Huang 2017 University of Nebraska-Lincoln

Strained Hybrid Perovskite Thin Films And Their Impact On The Intrinsic Stability Of Perovskite Solar Cells, Jingjing Zhao, Yehao Deng, Haotong Wei, Xiaopeng Zheng, Zhenhua Yu, Yuchuan Shao, Jeffrey E. Shield, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane …


Nondestructive Testing System Design For Biological Product Based On Vibration Signal Analysis Of Acceleration Sensor, Xiaohao Li, Tao Shen 2017 Northeastern University

Nondestructive Testing System Design For Biological Product Based On Vibration Signal Analysis Of Acceleration Sensor, Xiaohao Li, Tao Shen

Department of Mechanical and Materials Engineering: Faculty Publications

In order to reduce the disadvantages of current biological product quality testing methods, taking the quality testing in cocoon trade markets as an example, this paper has proposed a quality nondestructive testing method for biological products based on the analysis of vibration signal from acceleration sensors. According to the wavelet transformation analysis on the random vibration signal acquired from the acceleration sensor, the random vibration signal related to the silkworm chrysalis quality has been analyzed and reconstructed; then the characteristic values such as: mean value, variance, mean square root, waveform index, pulse factor, and so on of the quality signal …


Dissipative Elastic Metamaterial With A Lowfrequency Passband, Yongquan Liu, Jianlin Yi, Zheng Li, Xianyue Su, Wenlong Li, Mehrdad Negahban 2017 Peking University

Dissipative Elastic Metamaterial With A Lowfrequency Passband, Yongquan Liu, Jianlin Yi, Zheng Li, Xianyue Su, Wenlong Li, Mehrdad Negahban

Department of Mechanical and Materials Engineering: Faculty Publications

We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its …


Solution Nuclear Magnetic Resonance Spectroscopy On A Nanostructured Diamond Chip, P. Kehayias, A. Jarmola, N. Mosavian, I. Fescenko, F.M. Benito, A. Laraoui, J. Smits, L. Bougas, D. Budker, A. Neumann, S.R.J. Brueck, V.M. Acosta 2017 Harvard University & University of New Mexico

Solution Nuclear Magnetic Resonance Spectroscopy On A Nanostructured Diamond Chip, P. Kehayias, A. Jarmola, N. Mosavian, I. Fescenko, F.M. Benito, A. Laraoui, J. Smits, L. Bougas, D. Budker, A. Neumann, S.R.J. Brueck, V.M. Acosta

Department of Mechanical and Materials Engineering: Faculty Publications

Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform 1H …


Narrowband Nanocomposite Photodetector, Jinsong Huang, Fawen Guo, Liang Shen 2017 Lincoln, NE

Narrowband Nanocomposite Photodetector, Jinsong Huang, Fawen Guo, Liang Shen

Department of Mechanical and Materials Engineering: Faculty Publications

A photodetector includes an anode that is transparent or partially transparent to light, a cathode and an active layer disposed between the anode and the cathode. The active layer includes a nanocomposite material that has a polymer blended with nanoparticles or organic electron trapping particles. The photodetector has a low dark current when not illuminated by light and has a high conductivity when illuminated by light, in which the light passes the anode and is absorbed by the active layer. The active layer has a thickness selected such that the photodetector has a narrowband spectral response.


Role Of Copper Oxide Layer On Pool Boiling Performance With Femtosecond Laser Processed Surfaces, Corey Kruse, Edwin Peng, Craig Zuhlke, Jeff Shield, Dennis Alexander, Sidy Ndao, George Gogos 2017 University of Nebraska-Lincoln

Role Of Copper Oxide Layer On Pool Boiling Performance With Femtosecond Laser Processed Surfaces, Corey Kruse, Edwin Peng, Craig Zuhlke, Jeff Shield, Dennis Alexander, Sidy Ndao, George Gogos

Department of Mechanical and Materials Engineering: Faculty Publications

Copper pool boiling surfaces are tested for pool boiling enhancement due to femtosecond laser surface processing (FLSP). FLSP creates self-organized micro/nanostructures on metallic surfaces and creates highly wetting and wicking surfaces with permanent surface features. In this study two series of samples were created. The first series consists of three flat FLSP copper surfaces with varying microstructures and the second series is an open microchannel configuration with laser processing over the horizontal surfaces of the microchannels. These microchannels range in height from 125 microns to 380 microns. Each of these surfaces were tested for pool boiling performance. It was found …


Quantification Of Re-Absorption And Re-Emission Processes To Determine Photon Recycling Efficiency In Perovskite Single Crystals, Yanjun Fang, Haotong Wei, Qingfeng Dong, Jinsong Huang 2017 University of Nebraska-Lincoln

Quantification Of Re-Absorption And Re-Emission Processes To Determine Photon Recycling Efficiency In Perovskite Single Crystals, Yanjun Fang, Haotong Wei, Qingfeng Dong, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Photon recycling, that is, iterative self-absorption and re-emission by the photoactive layer itself, has been speculated to contribute to the high open-circuit voltage in several types of high efficiency solar cells. For organic–inorganic halide perovskites that have yielded highly efficient photovoltaic devices, however, it remains unclear whether the photon recycling effect is significant enough to improve solar cell efficiency. Here we quantitatively evaluate the re-absorption and re-emission processes to determine photon recycling efficiency in hybrid perovskite with its single crystals by measuring the ratio of the re-emitted photons to the initially excited photons, which is realized by modulating their polarization …


Low-Drag Events In Transitional Wall-Bounded Turbulence, Richard D. Whalley, Jae Sung Park, Anubhav Kushwaha, David J.C. Dennis, Michael D. Graham, Robert J. Poole 2017 Newcastle University

Low-Drag Events In Transitional Wall-Bounded Turbulence, Richard D. Whalley, Jae Sung Park, Anubhav Kushwaha, David J.C. Dennis, Michael D. Graham, Robert J. Poole

Department of Mechanical and Materials Engineering: Faculty Publications

Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 – 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.


Atomically Informed Nonlocal Semidiscrete Variational Peierls-Nabarro Model For Planar Core Dislocations, Guisen Liu, Xi Cheng, Jian Wang, Kaiguo Chen, Yao Shen 2017 Shanghai Jiao Tong University

Atomically Informed Nonlocal Semidiscrete Variational Peierls-Nabarro Model For Planar Core Dislocations, Guisen Liu, Xi Cheng, Jian Wang, Kaiguo Chen, Yao Shen

Department of Mechanical and Materials Engineering: Faculty Publications

Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be …


Fluid-Structure Interaction In Abdominal Aortic Aneurysm: Effect Of Modeling Techniques, Shengmao Lin, Xinwei Han, Yonghua Bi, Siyeong Ju, Linxia Gu 2017 Xiamen University of Technology

Fluid-Structure Interaction In Abdominal Aortic Aneurysm: Effect Of Modeling Techniques, Shengmao Lin, Xinwei Han, Yonghua Bi, Siyeong Ju, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that …


High Temperature Near-Field Nanothermomechanical Rectification, Mahmoud Elzouka, Sidy Ndao 2017 University of Nebraska-Lincoln

High Temperature Near-Field Nanothermomechanical Rectification, Mahmoud Elzouka, Sidy Ndao

Department of Mechanical and Materials Engineering: Faculty Publications

Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation …


Surface Charge Switchable And Ph-Responsive Chitosan/Polymer Core-Shell Composite Nanoparticles For Drug Delivery Application, W. F. Huang, C. P. Tsui, M. Yang, Linxia Gu 2017 Hong Kong Polytechnic University

Surface Charge Switchable And Ph-Responsive Chitosan/Polymer Core-Shell Composite Nanoparticles For Drug Delivery Application, W. F. Huang, C. P. Tsui, M. Yang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The mutually conflicting surface charge requirements for nanoparticles to have long circulation and good cell affinity have made the development of polymer nanoparticles for controlled drug delivery fall into a dilemma. In order to solve this problem, the first attempt has been made in this work to develop vancomycin loaded composite nanoparticles with a novel chitosan core and poly (lactide-co-glycolide) (PLGA) shell structure and with both pH-responsive and surface charge switchable properties. Spherical composite nanoparticles have been successfully fabricated through a modified emulsion-gelation method with a controllable size (316–573 nm), surface charge (–27.6–31.75 mV) and encapsulation efficiency up to 70.8%. …


Helium Irradiation And Implantation Effects On The Structure Of Amorphous Silicon Oxycarbide, Qing Su, Shinsuke Inoue, Manabu Ishimaru, Jennifer A. Gigax, Tianyao Wang, Hepeng Ding, Michael J. Demkowicz, Lin Shao, Michael Nastasi 2017 University of Nebraska-Lincoln

Helium Irradiation And Implantation Effects On The Structure Of Amorphous Silicon Oxycarbide, Qing Su, Shinsuke Inoue, Manabu Ishimaru, Jennifer A. Gigax, Tianyao Wang, Hepeng Ding, Michael J. Demkowicz, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bonds …


Molecular Dynamics Simulations Of Heterogeneous Cell Membranes In Response To Uniaxial Membrane Stretches At High Loading Rates, Lili Zhang, Zesheng Zhang, John Jasa, Dongli Li, Robin O. Cleveland, Mehrdad Negahban, Antoine Jérusalem 2017 University of Oxford

Molecular Dynamics Simulations Of Heterogeneous Cell Membranes In Response To Uniaxial Membrane Stretches At High Loading Rates, Lili Zhang, Zesheng Zhang, John Jasa, Dongli Li, Robin O. Cleveland, Mehrdad Negahban, Antoine Jérusalem

Department of Mechanical and Materials Engineering: Faculty Publications

The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of …


Digital Commons powered by bepress