Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Discipline
Keyword
Publication Year
Publication

Articles 61 - 90 of 160

Full-Text Articles in Physics

Nuclear Modification Factor In D + Au Collisions: Onset Of Suppression In The Color Glass Condensate, Dmitri Kharzeev, Yuri V. Kovchegov, Kirill Tuchin Jan 2004

Nuclear Modification Factor In D + Au Collisions: Onset Of Suppression In The Color Glass Condensate, Dmitri Kharzeev, Yuri V. Kovchegov, Kirill Tuchin

Kirill Tuchin

We perform a quantitative analysis of the nuclear modification factor in deuteron-gold collisions R dAu within the Color Glass Condensate approach, and compare our results with the recent data from RHIC experiments. Our model leads to Cronin enhancement at mid-rapidity, while at forward rapidities it predicts strong suppression of R dAu at all PT due to low-x evolution. We demonstrate that our results are consistent with the data for dAu charged hadron spectra, R dAu and R CP recently reported for rapidities in the interval η=0-3.2 by the BRAHMS experiment at RHIC. We also make a prediction for R pA …


Particle Correlations At High Partonic Density, Kirill Tuchin Jan 2004

Particle Correlations At High Partonic Density, Kirill Tuchin

Kirill Tuchin

We discuss manifestations of the particle correlations at high partonic density in the heavy-ion collisions at RHIC. In particular, we argue that the elliptic flow variable v% is dominated by particle correlations at high PT


Qcd In Curved Space-Time: A Conformal Bag Model, Dmitri Kharzeev, Eugene Levin, Kirill Tuchin Jan 2004

Qcd In Curved Space-Time: A Conformal Bag Model, Dmitri Kharzeev, Eugene Levin, Kirill Tuchin

Kirill Tuchin

We construct an effective low energy Lagrangian using constraints imposed by the renormalization group. Degrees of freedom are gluons and a scalar glueball. This effective theory has a dual description as classical gluodynamics on a curved conformal background. Color fields are dynamically confined, and the strong coupling freezes at distances larger than the glueball size. We make specific predictions (in particular, on the Nc dependence of glueball properties) which can be tested in lattice simulations of gluodynamics.


Prediction Of Dopant Ionization Energies In Silicon: The Importance Of Strain, A. Rockett, Duane D. Johnson, S. V. Khare, B. R. Tuttle Dec 2003

Prediction Of Dopant Ionization Energies In Silicon: The Importance Of Strain, A. Rockett, Duane D. Johnson, S. V. Khare, B. R. Tuttle

Duane D. Johnson

Based on a hydrogenic state and strain changes upon defect charging, we propose a simple, parameter-free model that agrees well with the observed group III and V monovalent-impurity ionization energies in Si, revealing the importance of such strain effects. Changes in lattice strain upon defect charging are obtained via superposition and elasticity theory using atomic relaxations from density functional theory.


Competition Between Ferromagnetism And Antiferromagnetism In Fept, G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, Duane D. Johnson Aug 2003

Competition Between Ferromagnetism And Antiferromagnetism In Fept, G. Brown, B. Kraczek, A. Janotti, T. C. Schulthess, G. M. Stocks, Duane D. Johnson

Duane D. Johnson

Ni/Fe/Co/Cu(100) films were epitaxially grown and investigated by photoemission electron microscopy. The magnetic correlation of the Ni and Co films was investigated by element-specific domain images. We found that the Ni magnetization exhibits a continuous rotation in the spin reorientation transition (SRT) region and that the Ni SRT thickness oscillates with the Fe film thickness.


Предсказание Термодинамики И Упорядочения В Металлических Сплавах Из Первых Принципов, Николай Заркевич Jun 2003

Предсказание Термодинамики И Упорядочения В Металлических Сплавах Из Первых Принципов, Николай Заркевич

Nikolai A. Zarkevich

Кластерные разложения по взаимодействиям все чаще используются для много- масштабного моделирования, сочетающего расчёты электронной структуры из первых принципов и методы Монте-Карло для предсказания термодинамических свойств сплавов. Кластерное разложение – это разложение по базису геометрических объектов (кластеров) на решётке и эффективных межатомных взаимодействий. Кластерное разложение может быть математически точным и бесконечным, но практично только в усечённом конечном базисе. Однако до сих пор процедура усечения базиса не была строго определена и не гарантировала надёжный результат. Мы предлагаем метод оптимального усечения базиса геометрических кластеров, который ведёт к надёжным предсказаниям термодинамики. Далее для примера мы проводим количественный расчёт термодинамических свойств ГЦК сплава Ni3V и …


Reply To “Comment On ‘Classical Density Functional Theory Of Freezing In Simple Fluids: Numerically Induced False Solutions’ ”, M. Valera, F. J. Pinski, Duane D. Johnson May 2003

Reply To “Comment On ‘Classical Density Functional Theory Of Freezing In Simple Fluids: Numerically Induced False Solutions’ ”, M. Valera, F. J. Pinski, Duane D. Johnson

Duane D. Johnson

Recently we solved, via discrete numerical grids, the Ramakrishna-Yossouff density-functional theory equations for the freezing transition and obtained an intricate phase diagram of hard-sphere mixtures. Even though such methods provide more variational freedom than basis-set methods, we found that the thermodynamic quantities were sensitive to the spacing of numerical grids employed and observed numerically induced false minima. Dasgupta and Valls have commented that these false minima were due to our use of k-space methods and, hence, their early works based on a fully r-space approach are qualitatively correct, despite also being sensitive to the mesh granularity. Here, we clarify the …


Predicted Hcp Ag-Al Metastable Phase Diagram, Equilibrium Ground States, And Precipitate Structure, Nikolai A. Zarkevich, Duane D. Johnson Feb 2003

Predicted Hcp Ag-Al Metastable Phase Diagram, Equilibrium Ground States, And Precipitate Structure, Nikolai A. Zarkevich, Duane D. Johnson

Nikolai A. Zarkevich

Formation energies of a number of hcp-based Ag-Al structures are obtained from ab initio electronic-structure calculations and used within a cluster expansion approach to construct an effective alloy Hamiltonian. Formation energies are found to be inherently asymmetric versus composition, providing an incipient tendency for precipitation in Al-rich alloy. Both ground-state search and Monte Carlo simulations based on the cluster expansion are used to determine the metastable hcp Ag-Al phase diagram. A new equilibrium hcp AgAl ground state is predicted and zero-energy domain boundary defects are found. From thermodynamic results, we discuss the precipitate structure and composition in Al-rich Al-Ag alloys …


Absolute Orientation-Dependent Anisotropic Tin(111) Island Step Energies And Stiffnesses From Shape Fluctuation Analyses, S. Kodambaka, S. V. Khare, V. Petrova, Duane D. Johnson, I. Petrov, J. E. Greene Jan 2003

Absolute Orientation-Dependent Anisotropic Tin(111) Island Step Energies And Stiffnesses From Shape Fluctuation Analyses, S. Kodambaka, S. V. Khare, V. Petrova, Duane D. Johnson, I. Petrov, J. E. Greene

Duane D. Johnson

In situ high-temperature (1165–1248 K) scanning-tunneling microscopy was used to measure temporal fluctuations about the anisotropic equilibrium shape of two-dimensional TiN(111) adatom and vacancy islands on atomically smooth TiN(111) terraces. The equilibrium island shape was found to be a truncated hexagon bounded by alternating 〈110〉 steps, which form [100] and [110] nanofacets with the terrace. Relative step energies β as a function of step orientation φ were obtained from the inverse Legendre transformation of the equilibrium island shape to within an orientation-independent scale factor λ, the equilibrium chemical potential of the island per unit TiN area. We find that for …


Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. Iii. Alternative Potentials, Critical Nuclei, Kink Solutions, And Dislocation Theory, Valery I. Levitas, Dean L. Preston, Dong Wook Lee Jan 2003

Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. Iii. Alternative Potentials, Critical Nuclei, Kink Solutions, And Dislocation Theory, Valery I. Levitas, Dean L. Preston, Dong Wook Lee

Valery I. Levitas

In part III of this paper, alternative Landau potentials for the description of stress-and temperature-induced martensitic phase transformations under arbitrary three-dimensional loading are obtained. These alternative potentials include a sixth-degree (2-4-6) polynomial in Cartesian order parameters and a potential in hyperspherical order parameters. Each satisfies all conditions for the correct description of experiments. The unique features of the potentials are pointed out and a detailed comparison of the potentials is made for NiAl alloy. Analytic solutions of the one-dimensional time-independent Ginzburg-Landau equations for the 2-3-4 and 2-4-6 potentials for a constant-stress tensor and invariant-plane strain are obtained and compared. Solutions …


Cronin Effect And High-Pt Suppression In Pa Collisions, Dmitri Kharzeev, Yuri V. Kovchegov, Kirill Tuchin Jan 2003

Cronin Effect And High-Pt Suppression In Pa Collisions, Dmitri Kharzeev, Yuri V. Kovchegov, Kirill Tuchin

Kirill Tuchin

We review the predictions of the theory of a color glass condensate for a gluon production cross section in p(d)A collisions. We demonstrate that, at moderate energies, when the gluon production cross section can be calculated in the framework of the McLerran-Venugopalan model, it has only a partonic level Cronin effect in it. At higher energies or rapidities corresponding to smaller values of the Bjorken x, quantum evolution becomes important. The effect of quantum evolution at higher energies or rapidities is to introduce the suppression of high-pT gluons slightly decreasing the Cronin enhancement. At still higher energies or rapidities quantum …


Stationary Correlations For A Far-From-Equilibrium Spin Chain, Beate Schmittmann, F. Schmüser Oct 2002

Stationary Correlations For A Far-From-Equilibrium Spin Chain, Beate Schmittmann, F. Schmüser

Beate Schmittmann

A kinetic one-dimensional Ising model on a ring evolves according to a generalization of Glauber rates, such that spins at even (odd) lattice sites experience a temperature Te (To). Detailed balance is violated so that the spin chain settles into a nonequilibrium stationary state, characterized by multiple interactions of increasing range and spin order. We derive the equations of motion for arbitrary correlation functions and solve them to obtain an exact representation of the steady state. Two nontrivial amplitudes reflect the sublattice symmetries; otherwise, correlations decay exponentially, modulo the periodicity of the ring. In the long-chain limit, they factorize into …


Magnetochemical Origin For Invar Anomalies In Iron-Nickel Alloys, V. Crisan, P. Entel, H. Ebert, H. Akai, Duane D. Johnson, J. B. Staunton Jul 2002

Magnetochemical Origin For Invar Anomalies In Iron-Nickel Alloys, V. Crisan, P. Entel, H. Ebert, H. Akai, Duane D. Johnson, J. B. Staunton

Duane D. Johnson

Zero- and finite-temperature (T) first-principles calculations versus composition (c) show that magnetochemical effects lead to Invar anomalies in Fe-(Ni, Co, Pt) alloys. Chemical short- or long-range order and negative interatomic exchange interaction of electrons in antibonding majority-spin states force the face-centered-cubic lattice to compete simultaneously for a smaller volume (from antiferromagnetic tendencies) and a larger volume (from Stoner ferromagnetic tendencies). The resulting additional negative lattice anharmonicity is very large for Fe-(Ni, Co) while absent for Fe-Pt. Our results explain the T- and c-dependent behavior of Invar properties, including the lattice softening and thermal expansion of Fe-Ni. In addition, the occurrence …


Absolute Tin(111) Step Energies From Analysis Of Anisotropic Island Shape Fluctuations, S. Kodambaka, V. Petrova, S. V. Khare, Duane D. Johnson, I. Petrov, J. E. Greene Apr 2002

Absolute Tin(111) Step Energies From Analysis Of Anisotropic Island Shape Fluctuations, S. Kodambaka, V. Petrova, S. V. Khare, Duane D. Johnson, I. Petrov, J. E. Greene

Duane D. Johnson

In situ high-temperature (1165–1248 K) scanning tunneling microscopy was used to measure fluctuations around the equilibrium shape of two-dimensional vacancy islands on TiN(111) terraces. From the equilibrium shape, the ratio of the two ⟨110⟩ step energies was found to be 0.72±0.02. Combining this with the results of an exact approach for analysis of shape fluctuations, applicable to highly anisotropic islands, we obtain absolute values for step energies and step stiffnesses as a function of orientation.


First-Principles Theory Of The Temperature And Compositional Dependence Of Atomic Short-Range Order In Disordered Cu-Pd Alloys, R. V. Chepulskii, J. B. Staunton, Ezio Bruno, B. Ginatempo, Duane D. Johnson Feb 2002

First-Principles Theory Of The Temperature And Compositional Dependence Of Atomic Short-Range Order In Disordered Cu-Pd Alloys, R. V. Chepulskii, J. B. Staunton, Ezio Bruno, B. Ginatempo, Duane D. Johnson

Duane D. Johnson

We combine the first-principles, Korringa-Kohn-Rostoker coherent potential approximation based calculations of compositional fluctuations with a statistical mechanical ring approximation to study the temperature (T) and composition (c) dependence of the atomic short-range order (SRO) in disordered, face-centred cubic, Cu-Pd alloys. The fourfold splitting of SRO peaks around the equivalent X(0,1,0) points in reciprocal space is obtained in a wide T−c region. Such splitting is shown to be an “energy” effect caused by the absolute minima of the Fourier transform of the effective atomic interactions and related previously to the existence of nested sheets of the disordered alloy’s Fermi surface. However, …


Inclusive Gluon Production In Deep Inelastic Scattering At High Parton Density, Yuri V. Kovchegov, Kirill Tuchin Jan 2002

Inclusive Gluon Production In Deep Inelastic Scattering At High Parton Density, Yuri V. Kovchegov, Kirill Tuchin

Kirill Tuchin

We calculate the cross section of single inclusive gluon production in deep inelastic scattering at very high energies in the saturation regime, where the parton densities inside hadrons and nuclei are large and the evolution of structure functions with energy is nonlinear. The expression we obtain for the inclusive gluon production cross section is generated by this nonlinear evolution. We analyze the rapidity distribution of the produced gluons as well as their transverse momentum spectrum given by the derived expression for the inclusive cross section. We propose an ansatz for the multiplicity distribution of gluons produced in nuclear collisions which …


Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. Ii. Multivariant Phase Transformations And Stress Space Analysis, Valery I. Levitas, Dean L. Preston Jan 2002

Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. Ii. Multivariant Phase Transformations And Stress Space Analysis, Valery I. Levitas, Dean L. Preston

Valery I. Levitas

In this paper, the three-dimensional Landau model of austenite-martensite transformations constructed in Part I is generalized to include transformations between an arbitrary number of martensitic variants. The model can incorporate all temperature-dependent thermomechanical properties of both phases for arbitrary crystal symmetries, including higher-order elastic constants, and it correctly describes the characteristic features of stress-strain curves for shape-memory alloys and steels, namely, constant transformation strain tensors, constant or weakly temperature dependent stress hysteresis, and transformation at nonzero tangent moduli. Geometric representations of the conditions for phase equilibrium and phase transformations in six-dimensional stress space are developed. For the cubic-tetragonal phase transformation, …


Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. I. Austenite↔Martensite, Valery I. Levitas, Dean L. Preston Jan 2002

Three-Dimensional Landau Theory For Multivariant Stress-Induced Martensitic Phase Transformations. I. Austenite↔Martensite, Valery I. Levitas, Dean L. Preston

Valery I. Levitas

A three-dimensional Landau theory of stress-induced martensitic phase transformations is presented. It describes transformations between austenite and martensitic variants and transformations between martensitic variants. The Landau free energy incorporates all temperature-dependent thermomechanical properties of both phases. The theory accounts for the principal features of martensitic transformations in shape memory alloys and steels, namely, stress-strain curves with constant transformation strain and constant, or weakly temperature dependent, stress hysteresis, as well as nonzero tangent elastic moduli at the phase transformation point. In part I, the austenite↔martensite phase transformation is treated, while transformations between martensitic variants are considered in part II.


Low-Cost Manufacturing Process For Nanostructured Metals And Alloys, Travis L. Brown, Srinivasan Swaminathan, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King, Kevin P. Trumble Jan 2002

Low-Cost Manufacturing Process For Nanostructured Metals And Alloys, Travis L. Brown, Srinivasan Swaminathan, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King, Kevin P. Trumble

Alexander H. King

In spite of their interesting properties, nanostructured materials have found limited uses because of the cost of preparation and the limited range of materials that can be synthesized. It has been shown that most of these limitations can be overcome by subjecting a material to large-scale deformation, as occurs during common machining operations. The chips produced during lathe machining of a variety of pure metals, steels, and other alloys are shown to be nanostructured with grain (crystal) sizes between 100 and 800 nm. The hardness of the chips is found to be significantly greater than that of the bulk material.


Classical Gluodynamics In Curved Space-Time And The Soft Pomeron, Dmitri Kharzeev, Eugene Levin, Kirill Tuchin Jan 2002

Classical Gluodynamics In Curved Space-Time And The Soft Pomeron, Dmitri Kharzeev, Eugene Levin, Kirill Tuchin

Kirill Tuchin

QCD at the classical level possesses scale invariance which is broken by quantum effects. This "dimensional transmutation" phenomenon can be mathematically described by formulating classical gluodynamics in a curved, conformally flat, space-time with non-vanishing cosmological constant. We study QCD high-energy scattering in this theory. We find that the properties of the scattering amplitude at small momentum transfer are determined by the energy density of vacuum fluctuations. The approach gives rise to the power growth of the total hadron-hadron cross section with energy, i.e., the pomeron. The intercept of the pomeron and the multiplicity of produced particles are evaluated. We also …


Accuracy And Limitations Of Localized Green’S Function Methods For Materials Science Applications, Duane D. Johnson, Andrei V. Smirnov Dec 2001

Accuracy And Limitations Of Localized Green’S Function Methods For Materials Science Applications, Duane D. Johnson, Andrei V. Smirnov

Duane D. Johnson

We compare screened real-space and reciprocal-space implementations of Korringa-Kohn-Rostoker electronic-structure method for their applicability to largescale problems requiring various levels of accuracy. We show that real-space calculations in metals can become impractical to describe energies. We suggest a combined r- and k-space scheme as the most efficient and flexible strategy for accurate energy calculations. Our hybrid code is suitable for (parallel) large-scale calculations involving complex, multicomponent systems. We also discuss how details of numerical procedures can affect accuracy of such calculations.


Classical Density Functional Theory Of Freezing In Simple Fluids: Numerically Induced False Solutions, M. Valera, F. J. Pinski, Duane D. Johnson Nov 2001

Classical Density Functional Theory Of Freezing In Simple Fluids: Numerically Induced False Solutions, M. Valera, F. J. Pinski, Duane D. Johnson

Duane D. Johnson

Density functional theory (DFT) has provided many insights into the freezing of simple fluids. Several analytical and numerical solution have shown that the DFT provides an accurate description of freezing of hard spheres and their mixtures. Compared to other techniques, numerical, grid-based algorithms for solving the DFT equations have more variational freedom and are capable of describing subtle behavior, as that seen in mixtures with multipeaked density profiles. However the grid-based approach is sensitive to the coarseness of the mesh employed. Here we summarize how the granularity of the mesh affects the freezing point within the DFT. For coarse meshes, …


Microscopic Kinetics And Time-Dependent Structure Factors, T. Aspelmeier, Beate Schmittmann, R. K. P. Zia Jul 2001

Microscopic Kinetics And Time-Dependent Structure Factors, T. Aspelmeier, Beate Schmittmann, R. K. P. Zia

Beate Schmittmann

The time evolution of structure factors (SF) in the disordering process of an initially phase-separated lattice depends crucially on the microscopic disordering mechanism, such as Kawasaki dynamics (KD) or vacancy-mediated disordering (VMD). Monte Carlo simulations show unexpected “dips” in the SFs. A phenomenological model is introduced to explain the dips in the odd SFs, and an analytical solution of KD is derived, in excellent agreement with simulations. The presence (absence) of dips in the even SFs for VMD (KD) marks a significant but not yet understood difference of the two dynamics.


Higher Twist Corrections And Maxima For Dis On A Proton In The High Density Qcd Region, E. Gotsman, Eugene Levin, U. Maor, L. Mclerran, Kirill Tuchin Jan 2001

Higher Twist Corrections And Maxima For Dis On A Proton In The High Density Qcd Region, E. Gotsman, Eugene Levin, U. Maor, L. Mclerran, Kirill Tuchin

Kirill Tuchin

We show that the ratio of different structure functions have a maximum which depends on energy. We argue, using the Golec-Biernat and Wusthoff model as well as the eikonal approach, that these maxima are functions of the saturation scale. We analyze leading and higher twist contributions for different observables to check whether a kinematic region exists where high parton density effects can be detected experimentally.


Unbiased Density Functional Solutions Of Freezing In Binary Mixtures Of Hard Or Soft Spheres, M. Valera, R. F. Bielby, F. J. Pinksi, Duane D. Johnson Jan 2001

Unbiased Density Functional Solutions Of Freezing In Binary Mixtures Of Hard Or Soft Spheres, M. Valera, R. F. Bielby, F. J. Pinksi, Duane D. Johnson

Duane D. Johnson

various size ratios, σ2/σ1, using density functional theory. The Grand Potential is minimized using an unbiased, discrete, real-space mesh that does not constrain the shape of the density, and, in many cases, leads to solutions qualitatively different from those using Gaussians and plane-waves. Besides the usual face-centered-cubic solid-solution phase for σ2/σ1≈1.0, we find a sublattice-melt phase for σ2/σ1=0.85–0.5 (where the small-sphere density is nonlocalized and multi-peaked) and the NaCl phase for σ2/σ1=0.45–0.35 (when the small-sphere density again sharpens). For a range of size ratios of soft sphere mixtures, we could not find stable nonuniform solutions. Preliminary calculations within a Modified-Weighted …


The Pomeron Intercept In Lambda Phi**Theory In 4 Minkowski + 1 Compact Dimensions, Kirill Tuchin Jan 2001

The Pomeron Intercept In Lambda Phi**Theory In 4 Minkowski + 1 Compact Dimensions, Kirill Tuchin

Kirill Tuchin

We calculate the total cross section for two scalar particles scattering at high energies in λφ3 theory in five dimensions, four of which are usual Minkowski ones and the fifth is compact. It is shown that the cross section is dominated by exchange of Pomeron whose intercept is larger than in usual four-dimensional case.


Propagating Conformational Changes Over Long (And Short) Distances In Proteins, Edward Yu, Daniel E. Koshland Jr. Jan 2001

Propagating Conformational Changes Over Long (And Short) Distances In Proteins, Edward Yu, Daniel E. Koshland Jr.

Edward Yu

The problem of the propagation of conformational changes over long distances or through a closely packed protein is shown to fit a model of a ligand-induced conformational change between two protein states selected by evolution. Moreover, the kinetics of the pathway between these states is also selected so that the energy of ligand binding and the speed of the transition between conformational states are physiologically appropriate. The crystallographic data of a wild-type aspartate receptor that has negative cooperativity and a mutant that has no cooperativity but has native transmembrane signaling are shown to support this model.


Temperature-Induced Configurational Excitations For Predicting Thermodynamic And Mechanical Properties Of Alloys, Duane D. Johnson, Andrei V. Smirnov, J. B. Staunton, F. J. Pinski, W. A. Shelton Nov 2000

Temperature-Induced Configurational Excitations For Predicting Thermodynamic And Mechanical Properties Of Alloys, Duane D. Johnson, Andrei V. Smirnov, J. B. Staunton, F. J. Pinski, W. A. Shelton

Duane D. Johnson

We show that a structural energy difference, ΔE, must include explicit symmetry-breaking changes of the electronic structure due to temperature-induced configurational excitations, and why ΔE at T=0 K is not necessarily relevant to thermodynamic and mechanical modeling. In Ni3V, we calculate a tenfold decrease of ΔE between D022 and L12 structures from T=0 K to states of order relevant to experiment. ΔE calculated directly from states with short-range order (8 meV) or with low partial order (7–12 meV) agree with high-T experiment (10 meV).


Spin Fluctuations In Nearly Magnetic Metals From Ab Initio Dynamical Spin Susceptibility Calculations: Application To Pd And Cr95v5, J. B. Staunton, J. Poulter, B. Ginatempo, E. Bruno, Duane D. Johnson Jul 2000

Spin Fluctuations In Nearly Magnetic Metals From Ab Initio Dynamical Spin Susceptibility Calculations: Application To Pd And Cr95v5, J. B. Staunton, J. Poulter, B. Ginatempo, E. Bruno, Duane D. Johnson

Duane D. Johnson

We describe our theoretical formalism and computational scheme for making ab initio calculations of the dynamic paramagnetic spin susceptibilities of metals and alloys at finite temperatures. Its basis is time-dependent density functional theory within an electronic multiple scattering, imaginary time Green function formalism. Results receive a natural interpretation in terms of overdamped oscillator systems making them suitable for incorporation into spin fluctuation theories. For illustration we apply our method to the nearly ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5. We compare and contrast the spin dynamics of these two metals and in each case identify those fluctuations …


Viability Of Competing Field Theories For The Driven Lattice Gas, Beate Schmittmann, H. K. Janssen, U. C. Tauber, R. K. P. Zia, K.-T. Leung, J. L. Cardy May 2000

Viability Of Competing Field Theories For The Driven Lattice Gas, Beate Schmittmann, H. K. Janssen, U. C. Tauber, R. K. P. Zia, K.-T. Leung, J. L. Cardy

Beate Schmittmann

It has recently been suggested that the driven lattice gas should be described by an alternate field theory in the limit of infinite drive. We review the original and the alternate field theory, invoking several well-documented key features of the microscopics. Since the alternate field theory fails to reproduce these characteristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the critical exponents associated with this theory, are reanalyzed and shown to be incorrect.