Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

2021

Discipline
Institution
Keyword
Publication

Articles 31 - 60 of 614

Full-Text Articles in Physics

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings Dec 2021

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings

Student Scholar Symposium Abstracts and Posters

Nanofabrication processes are widely used to make the integrated circuits and computer chips that are ubiquitous in today’s technology. These fabrication processes can also be applied to the creation of nanophotonic devices. The ways in which we apply these fabrication techniques in the field of photonics is often constrained by the technologies used for electronics manufacturing which presents an interesting engineering challenge. These limitations include availability and cost of certain fabrication equipment and techniques required to create state-of-the-art nanophotonic devices. Through work with the University of California Irvine nano-fabrication cleanroom, we designed and fabricated various integrated photonic components including grating …


2d Vs 3d Tracking In Bacterial Motility Analysis, Jacqueline Acres, Jay Nadeau Dec 2021

2d Vs 3d Tracking In Bacterial Motility Analysis, Jacqueline Acres, Jay Nadeau

Physics Faculty Publications and Presentations

Digital holographic microscopy provides the ability to observe throughout a large volume without refocusing. This capability enables simultaneous observations of large numbers of microorganisms swimming in an essentially unconstrained fashion. However, computational tools for tracking large 4D datasets remain lacking. In this paper, we examine the errors introduced by tracking bacterial motion as 2D projections vs. 3D volumes under different circumstances: bacteria free in liquid media and bacteria near a glass surface. We find that while XYZ speeds are generally equal to or larger than XY speeds, they are still within empirical uncertainties. Additionally, when studying dynamic surface behavior, the …


Hyperspectral Infrared Imaging Of Surface Phonon-Polaritons In Srtio3, D. J. Lahneman, M. M. Qazilbash Dec 2021

Hyperspectral Infrared Imaging Of Surface Phonon-Polaritons In Srtio3, D. J. Lahneman, M. M. Qazilbash

Arts & Sciences Articles

Polaritons have a demonstrated impact on nanophotonic applications in the midinfrared through visible spectral range. Surface phonon-polaritons (SPhPs) offer a way to bring the potential of polaritons to the longer infrared wavelengths. Strontium titanate (STO) is a perovskite polar dielectric with diverse technologically advantageous properties and it can support SPhPs in a uniquely broad spectral range of the far infrared. Despite these advantages, STO has mostly been overlooked as a nanophotonic material. In this work we investigate SPhP propagation in STO in the far-infrared through midinfrared spectral range using broadband, near-field nanospectroscopy. We developed a tabletop, laser sustained plasma light …


Identification And Characterization Of Bisbenzimide Compounds That Inhibit Human Cytomegalovirus Replication, Nicole Falci Finardi, Hyeongjun Kim, Lee Z. Hernandez, Matthew R. G. Russell, Catherine M-K Ho, Vattipally B. Sreenu, Hannah A. Wenham, Andy Merritt, Blair L. Strang Dec 2021

Identification And Characterization Of Bisbenzimide Compounds That Inhibit Human Cytomegalovirus Replication, Nicole Falci Finardi, Hyeongjun Kim, Lee Z. Hernandez, Matthew R. G. Russell, Catherine M-K Ho, Vattipally B. Sreenu, Hannah A. Wenham, Andy Merritt, Blair L. Strang

Physics and Astronomy Faculty Publications and Presentations

The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, …


Upconversion, Mri Imaging And Optical Trapping Studies Of Silver Nanoparticle Decorated Multifunctional Nagdf4:Yb,Er Nanocomposite, S. Yamini, M. Gunaseelan, Ajithkumar Gangadharan, Silverio A. Lopez, Karen S. Martirosyan, Agnishwar Girigoswami, Basudev Roy, J. Manonmani, Senthilselvan Jayaraman Nov 2021

Upconversion, Mri Imaging And Optical Trapping Studies Of Silver Nanoparticle Decorated Multifunctional Nagdf4:Yb,Er Nanocomposite, S. Yamini, M. Gunaseelan, Ajithkumar Gangadharan, Silverio A. Lopez, Karen S. Martirosyan, Agnishwar Girigoswami, Basudev Roy, J. Manonmani, Senthilselvan Jayaraman

Physics and Astronomy Faculty Publications and Presentations

The multifunctional upconversion nanoparticles (UCNPs) are fascinating tool for biological applications. In the present work, photon upconverting NaGdF4:Yb,Er and Ag nanoparticles decorated NaGdF4:Yb,Er (NaGdF4:Yb,Er@Ag) nanoparticles were prepared using a simple polyol process. Rietveld refinement was performed for detailed crystal structural and phase fraction analysis. The morphology of the NaGdF4:Yb,Er@Ag was examined using high-resolution transmission electron microscope, which reveals silver nanoparticles of 8 nm in size were decorated over spherical shaped NaGdF4:Yb,Er nanoparticles with a mean particle size of 90 nm. The chemical compositions were confirmed by EDAX and inductively coupled plasma-optical emission spectrometry analyses. The upconversion luminescence (UCL) of NaGdF4:Yb,Er …


Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt Nov 2021

Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

Physisorption on planar or curved graphitic surfaces or aromatic rings has been investigated by various research groups, but in these studies the substrate was usually strictly rigid. Here we report a combined experimental and theoretical study of helium adsorption on cationic hexaphenylbenzene (HPB), a propeller-shaped molecule. The orientation of its propeller blades is known to be sensitive to the environment, with substantial differences between the molecule in the gas phase and in the crystalline solid. Mass spectra of HenHPB+, synthesized in helium nanodroplets, indicate enhanced stability for ions containing n = 2, 4, 14, 28, 42, …


Role Played By Edge-Defects In The Optical Properties Of Armchair Graphene Nanoribbons, Thi-Nga Do, Godfrey Gumbs, Danhong Huang, Bui D. Hoi, Po-Hsin Shih Nov 2021

Role Played By Edge-Defects In The Optical Properties Of Armchair Graphene Nanoribbons, Thi-Nga Do, Godfrey Gumbs, Danhong Huang, Bui D. Hoi, Po-Hsin Shih

Publications and Research

We explore the implementation of specific optical properties of armchair graphene nanoribbons (AGNRs) through edge-defect manipulation. This technique employs the tight-binding model in conjunction with the calculated absorption spectral function. Modification of the edge states gives rise to the diverse electronic structures with striking changes in the band gap and special flat bands at low energy. The optical-absorption spectra exhibit unique excitation peaks, and they strongly depend on the type and period of the edge extension. Remarkably, there exist the unusual transition channels associated with the flat bands for selected edge-modified systems. We discovered the special rule governing how the …


Two-Dimensional Steady Boussinesq Convection: Existence, Computation And Scaling, Jeremiah S. Lane, Benjamin F. Akers Benjamin.Akers@Afit.Edu Nov 2021

Two-Dimensional Steady Boussinesq Convection: Existence, Computation And Scaling, Jeremiah S. Lane, Benjamin F. Akers Benjamin.Akers@Afit.Edu

Faculty Publications

This research investigates laser-induced convection through a stream function-vorticity formulation. Specifically, this paper considers a solution to the steady Boussinesq Navier–Stokes equations in two dimensions with a slip boundary condition on a finite box. A fixed-point algorithm is introduced in stream function-vorticity variables, followed by a proof of the existence of steady solutions for small laser amplitudes. From this analysis, an asymptotic relationship is demonstrated between the nondimensional fluid parameters and least upper bounds for laser amplitudes that guarantee existence, which accords with numerical results implementing the algorithm in a finite difference scheme. The findings indicate that the upper bound …


Comment On “Intensity Interference In A Coherent Spin-Polarized Electron Beam”, Herman Batelaan, Sam Keramati, T. J. Gay Nov 2021

Comment On “Intensity Interference In A Coherent Spin-Polarized Electron Beam”, Herman Batelaan, Sam Keramati, T. J. Gay

Department of Physics and Astronomy: Faculty Publications

No abstract provided.


Primordial Black Holes From A Cosmic Phase Transition: The Collapse Of Fermi-Balls, Kiyoharu Kawana, Ke-Pan Xie Nov 2021

Primordial Black Holes From A Cosmic Phase Transition: The Collapse Of Fermi-Balls, Kiyoharu Kawana, Ke-Pan Xie

Department of Physics and Astronomy: Faculty Publications

We propose a novel primordial black hole (PBH) formation mechanism based on a first-order phase transition (FOPT). If a fermion species gains a huge mass in the true vacuum, the corresponding particles get trapped in the false vacuum as they do not have sufficient energy to penetrate the bubble wall. After the FOPT, the fermions are compressed into the false vacuum remnants to form non-topological solitons called Fermi-balls, and then collapse to PBHs due to the Yukawa attractive force. We derive the PBH mass and abundance, showing that for a [](GeV)FOPT the PBHs could be ∼1017 g and explain …


Magnetic Dual Chiral Density Wave: A Candidate Quark Matter Phase For The Interior Of Neutron Stars, Efrain J. Ferrer, Vivian De La Incera Nov 2021

Magnetic Dual Chiral Density Wave: A Candidate Quark Matter Phase For The Interior Of Neutron Stars, Efrain J. Ferrer, Vivian De La Incera

Physics and Astronomy Faculty Publications and Presentations

n this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by …


Precise Measurement Of The D0 And D+ Lifetimes At Belle Ii, F. Abudin´En, I. Adachi, K. Adamczyk, L. Aggarwal, H. Ahmed, H. Aihara, N. Akopov, A. Aloisio, N. Anh Ky, D. M. Asner, H. Atmacan, V. Aushev, V. Babu, S. Bacher, H. Bae, S. Baehr, S. Bahinipati, P. Bambade, Milind Purohit, Et. Al. Nov 2021

Precise Measurement Of The D0 And D+ Lifetimes At Belle Ii, F. Abudin´En, I. Adachi, K. Adamczyk, L. Aggarwal, H. Ahmed, H. Aihara, N. Akopov, A. Aloisio, N. Anh Ky, D. M. Asner, H. Atmacan, V. Aushev, V. Babu, S. Bacher, H. Bae, S. Baehr, S. Bahinipati, P. Bambade, Milind Purohit, Et. Al.

Faculty Publications

We report a measurement of the D0 and D+ lifetimes using D0Kπ+ and D+ → Kπ+π+ decays reconstructed in e+e → cc̅ data recorded by the Belle II experiment at the SuperKEKB asymmetricenergy e+e collider. The data, collected at center-of-mass energies at or near the ϒ(4S) resonance, correspond to an integrated luminosity of 72 fb−1. The results, τ(D0) = 410.5 plusmn;1.1(stat) 0.8(syst) fs and τ(D+) = 1030.4 plusmn; 4.7(stat) 3.1(syst) …


Twisted Laminar Superconducting Composite: Mgb2 Embedded Carbon Nanotube Yarns, Ujjal Lamichhane, Gamage C. Dannangoda, Mkhitar Hobosyan, R. A. Shohan, A. Zakhidov, Karen S. Martirosyan Nov 2021

Twisted Laminar Superconducting Composite: Mgb2 Embedded Carbon Nanotube Yarns, Ujjal Lamichhane, Gamage C. Dannangoda, Mkhitar Hobosyan, R. A. Shohan, A. Zakhidov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Twisted laminar superconducting composite structures based on multi-wall carbon nanotube (MWCNT) yarns were crafted by integrating magnesium and boron homogeneous mixture into the carbon nanotube (CNT) aerogel sheets. After the ignition of the Mg–B–MWCNT system, under the controlled argon environment, the high exothermic reaction between magnesium (Mg) and boron (B) with stoichiometric ratio produced the MgB2@MWCNT superconducting composite yarns. The process was conducted under the controlled argon environment and uniform heating rate in the differential scanning calorimetry and thermogravimetric analyzer. The XRD analysis confirmed that the produced composite yarns contain nano and microscale inclusions of superconducting phase of MgB2. The …


Enhancing Student Learning Of Global Warming Through Reflective Writing, Liang Zeng, Guang Zeng Nov 2021

Enhancing Student Learning Of Global Warming Through Reflective Writing, Liang Zeng, Guang Zeng

Physics and Astronomy Faculty Publications and Presentations

The National Academy of Science has published studies showing strong scientific evidence that global warming is caused by human consumption of fossil fuels, yet recent surveys have shown young adults in the U.S. are disengaged or disagree with this fact. Accordingly, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) published learning objectives to educate the world population on global warming and renewable energy by 2030. In this paper, we introduce a reflective writing activity physics educators can employ to foster a deeper understanding of global warming in introductory college physics and physical science courses, without overloading their teaching time.


Operational Detection Of Sun Glints In Dscovr Epic Images, Tamás Várnai, Alexander Marshak, Alexander Kostinski Nov 2021

Operational Detection Of Sun Glints In Dscovr Epic Images, Tamás Várnai, Alexander Marshak, Alexander Kostinski

Michigan Tech Publications

Satellite images often feature sun glints caused by the specular reflection of sunlight from water surfaces or from horizontally oriented ice crystals occurring in clouds. Such glints can prevent accurate retrievals of atmospheric and surface properties using existing algorithms, but the glints can also be used to infer more about the glint-causing objects—for example about the microphysical properties and radiative effects of ice clouds. This paper introduces the recently released operational glint product of the Earth Polychromatic Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) spacecraft. Most importantly, the paper describes the algorithm used for generating the key component …


Experimental Observation Of Polarization-Resolved Nonlinear Thomson Scattering Of Elliptically Polarized Light, Colton Fruhling, Junzhi Wang, Donald Umstadter, Christoph Schulzke, Mahonri Romero, Michael Ware, Justin Peatross Nov 2021

Experimental Observation Of Polarization-Resolved Nonlinear Thomson Scattering Of Elliptically Polarized Light, Colton Fruhling, Junzhi Wang, Donald Umstadter, Christoph Schulzke, Mahonri Romero, Michael Ware, Justin Peatross

Department of Physics and Astronomy: Faculty Publications

We report experimental results from a study of nonlinear Thomson scattering of elliptically polarized light. Polarization-resolved radiation patterns of the scattered light are measured as a function of the elliptical polarization state of the incident laser light. The relativistic electron trajectory in intense elliptically polarized fields leads to the formation of unique radiated polarization states, which are observed by our measurements and predicted by a theoretical model. The polarization of Thomson scattered light depends strongly on the intensity of the incident light due to nonlinearity. The results are relevant to high-field electrodynamics and to research and development of light sources …


Gwtc-3: Compact Binary Coalescences Observed By Ligo And Virgo During The Second Part Of The Third Observing Run, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Volker Quetschke, Wenhui Wang Nov 2021

Gwtc-3: Compact Binary Coalescences Observed By Ligo And Virgo During The Second Part Of The Third Observing Run, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

The third Gravitational-wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the …


Charge Transport In Dielectric: The Pulsed Electroacoustic Method, Zachary Gibson Nov 2021

Charge Transport In Dielectric: The Pulsed Electroacoustic Method, Zachary Gibson

Physics Student Research

Understanding and predicting charge accumulation and transport in dielectric materials is vital in applications where excess charge can accumulate including semiconductor devices, high-power electronic devices, high voltage DC cabling, high-energy physics facilities, plasma chambers, and spacecraft charging. Excess charge accumulation may result in electrostatic discharge events, which are the leading cause of spacecraft failure due to the space environment. The pulsed electroacoustic method allows you to “pop the hood” and non-destructively directly measure the embedded charge distributions in dielectric materials. Charge transport in disordered dielectric materials, measurements with the pulsed electroacoustic system, and comparison to models will be presented.


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero Nov 2021

Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero

Faculty & Staff Scholarship

The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo …


Search For Active-Sterile Antineutrino Mixing Using Neutral-Current Interactions With The Nova Experiment, M. A. Acero, P. Adamson, L. Aliaga, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, L. Asquith, A. Aurisano, A. Back, C. Backhouse, M. Baird, N. Balashov, P. Baldi, B. A. Bambah, S. Bashar, K. Bays, R. Bernstein, B. Bhatnagar, B. Bhuyan, J. Bian, Roberto Petti, Et. Al. Nov 2021

Search For Active-Sterile Antineutrino Mixing Using Neutral-Current Interactions With The Nova Experiment, M. A. Acero, P. Adamson, L. Aliaga, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, L. Asquith, A. Aurisano, A. Back, C. Backhouse, M. Baird, N. Balashov, P. Baldi, B. A. Bambah, S. Bashar, K. Bays, R. Bernstein, B. Bhatnagar, B. Bhuyan, J. Bian, Roberto Petti, Et. Al.

Faculty Publications

This Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 and 810 km from the beam source, is analyzed using an exposure of 12.51×1020 protons-on-target from the NuMI beam at Fermilab running in antineutrino mode. A total of 121 of neutral-current candidates are observed at the far detector, compared to a prediction of 122±11(stat.)±15(syst.) assuming mixing only between three active flavors. No evidence for μ → s oscillation is observed. Interpreting this result within a …


Detecting And Reconstructing Gravitational Waves From The Next Galactic Core-Collapse Supernova In The Advanced Detector Era, Marek J. Szczepańczyk, Javier M. Antelis, Michael Benjamin, Marco Cavaglia, Dorota Gondek-Rosińska, Travis Hansen, Soma Mukherjee, Gaukhar Nurbek, Satzhan Sitmukhambetov, Oscar Valdez Nov 2021

Detecting And Reconstructing Gravitational Waves From The Next Galactic Core-Collapse Supernova In The Advanced Detector Era, Marek J. Szczepańczyk, Javier M. Antelis, Michael Benjamin, Marco Cavaglia, Dorota Gondek-Rosińska, Travis Hansen, Soma Mukherjee, Gaukhar Nurbek, Satzhan Sitmukhambetov, Oscar Valdez

Physics and Astronomy Faculty Publications and Presentations

We performed a detailed analysis of the detectability of a wide range of gravitational waves derived from core-collapse supernova simulations using gravitational-wave detector noise scaled to the sensitivity of the upcoming fourth and fifth observing runs of the Advanced LIGO, Advanced Virgo, and KAGRA. We use the coherent WaveBurst algorithm, which was used in the previous observing runs to search for gravitational waves from core-collapse supernovae. As coherent WaveBurst makes minimal assumptions on the morphology of a gravitational-wave signal, it can play an important role in the first detection of gravitational waves from an event in the Milky Way. We …


All-Sky Search For Long-Duration Gravitational-Wave Bursts In The Third Advanced Ligo And Advanced Virgo Run, Richard Abbott, Thomas D. Abbott, Fausto Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Volker Quetschke, Wenhui Wang Nov 2021

All-Sky Search For Long-Duration Gravitational-Wave Bursts In The Third Advanced Ligo And Advanced Virgo Run, Richard Abbott, Thomas D. Abbott, Fausto Acernese, K. Ackley, Teviet Creighton, Mario C. Diaz, F. Llamas, Soma Mukherjee, Volker Quetschke, Wenhui Wang

Physics and Astronomy Faculty Publications and Presentations

After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" less than or similar to 1 s and "long" greater than or similar to 1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from …


Temperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculationtemperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculation, Chandra Prasad Dhakal Nov 2021

Temperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculationtemperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculation, Chandra Prasad Dhakal

FIU Electronic Theses and Dissertations

Fluorescent proteins are valuable tools as biochemical markers in molecular and cell biology research for studying cellular processes. Red Fluorescent Proteins (RFPs) are highly desirable for in vivo applications in living cell imaging because they absorb and emit light in the red region of the spectrum where cellular autofluorescence. Naturally occurring fluorescent proteins with emission peaks in this region of the spectrum occur in dimeric or tetrameric forms. For their use as biochemical markers, several monomeric variants of RFP have been developed which include mCherry, dsRed, and mStrawberry. Far red-emitting FPs with large Stokes shift are especially valuables for in …


Modeling And Simulation Of Janus-Like Nanoparticles Formation By Solid-Gas Exothermic Reactions, A. A. Markov, Karen S. Martirosyan Nov 2021

Modeling And Simulation Of Janus-Like Nanoparticles Formation By Solid-Gas Exothermic Reactions, A. A. Markov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Theoretical model for the simulation of synthesis of Janus-like particles (JP) consisting two different phases using the Carbon Combustion Synthesis of Oxides (CCSO) is presented. The model includes the variation of sample initial porosity, carbon concentration and oxygen flow rate used to predict the formation of JP features. The two temperature (2T) combustion model of chemically active submicron-dispersed mixture of two phases including ferroelectric and ferromagnetic was implemented and assessed by using the experimentally estimated activation energy of 112±3.3 kJ/mol and combustion temperature. The experimental values allowed to account the thermal and concentration expansion effect along with the dispersion by …


Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan Nov 2021

Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan

Physics Faculty Publications

A straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the …


Geodetic Model For Teaching Motion On The Earth's Spheroidal Surface, Boyd F. Edwards, John M. Edwards Nov 2021

Geodetic Model For Teaching Motion On The Earth's Spheroidal Surface, Boyd F. Edwards, John M. Edwards

All Physics Faculty Publications

We explore the forces that shape our spheroidal Earth and the forces that govern the motion of a puck that slides without friction on its surface. The Earth's stable spheroidal shape (apart from small-scale surface features) is determined by balancing the gravitational forces that hold it together against the centrifugal forces that try to tear it apart. The motion of a puck on its surface differs profoundly from motion on a sphere because the Earth's spheroidal deformations neutralize the centrifugal and gravitational forces on the puck, leaving only the Coriolis force to govern the motion. Yet the Earth's spheroidal deformations …


Experimental Verification Of Principal Losses In A Regulatory Particulate Matter Emissions Sampling System For Aircraft Turbine Engines, D. B. Kittelson, J. Swanson, M. Aldridge, R. A. Giannelli, J. S. Kinsey, J. A. Stevens, D. S. Liscinsky, Donald E. Hagen, For Full List Of Authors, See Publisher's Website. Nov 2021

Experimental Verification Of Principal Losses In A Regulatory Particulate Matter Emissions Sampling System For Aircraft Turbine Engines, D. B. Kittelson, J. Swanson, M. Aldridge, R. A. Giannelli, J. S. Kinsey, J. A. Stevens, D. S. Liscinsky, Donald E. Hagen, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

A sampling system for measuring emissions of nonvolatile particulate matter (nvPM) from aircraft gas turbine engines has been developed to replace the use of smoke number and is used for international regulatory purposes. This sampling system can be up to 35 m in length. The sampling system length in addition to the volatile particle remover (VPR) and other sampling system components lead to substantial particle losses, which are a function of the particle size distribution, ranging from 50 to 90% for particle number concentrations and 10-50% for particle mass concentrations. The particle size distribution is dependent on engine technology, operating …


Gravitational Wave Sensors Based On Superconducting Transducers, Armen Gulian, Joe Foreman, Vahan Nikoghosyan, Louis Sica, Pablo Abramian-Barco, Jeff Tollaksen, Gurgen Melkonyan, Iris Mowgood, Chris Burdette, Rajendra Dulal, Serafim Teknowijoyo, Sara Chahid, Shmuel Nussinov Nov 2021

Gravitational Wave Sensors Based On Superconducting Transducers, Armen Gulian, Joe Foreman, Vahan Nikoghosyan, Louis Sica, Pablo Abramian-Barco, Jeff Tollaksen, Gurgen Melkonyan, Iris Mowgood, Chris Burdette, Rajendra Dulal, Serafim Teknowijoyo, Sara Chahid, Shmuel Nussinov

Mathematics, Physics, and Computer Science Faculty Articles and Research

Following the initial success of LIGO, new advances in gravitational wave (GW) detector systems are planned to reach fruition during the next decades. These systems are interferometric and large. Here we suggest different, more compact detectors of GW radiation with competitive sensitivity. These nonresonant detectors are not interferometric. They use superconducting Cooper pairs in a magnetic field to transform mechanical motion induced by GW into detectable magnetic flux. The detectors can be oriented relative to the source of GW, so as to maximize the signal output and help determine the direction of nontransient sources. In this design an incident GW …


Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton Nov 2021

Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton

Faculty Publications

Barium gallium selenide (BaGa4Se7) is a recently developed nonlinear optical material with a transmission window extending from 470 nm to 17 μm. A primary application of these crystals is the production of tunable mid-infrared laser beams via optical parametric oscillation. Unintentional point defects, such as selenium vacancies, cation vacancies (barium and/or gallium), and trace amounts of transition-metal ions, are present in BaGa4Se7 crystals and may adversely affect device performance. Electron paramagnetic resonance (EPR) and optical absorption are used to identify and characterize these defects. Five distinct EPR spectra, each representing an electron …