Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Triply Differential Positron And Electron Impact Ionization Of Argon: Systematic Features And Scaling, Robert D. Dubois, O. G. De Lucio Dec 2021

Triply Differential Positron And Electron Impact Ionization Of Argon: Systematic Features And Scaling, Robert D. Dubois, O. G. De Lucio

Physics Faculty Research & Creative Works

Triply differential data are presented for the 200 eV positron and electron impact ionization of argon. Six electron emission energies between 2.6 and 19 eV, and for scattering angles of 2, 3, and 4 degrees cover a momentum transfer range of 0.16 to 0.31 a.u. The binary and recoil intensities are fitted using a double peak structure in both regions, which, for the present kinematic conditions, are unresolved. The fitted peak intensities and angular positions are shown to have systematic dependences as a function of the momentum transfer and kinematic emission angle, respectively, and illustrate projectile charge effects. A comparison …


Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner Mar 2021

Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner

Honors Theses

This thesis describes the experimental apparatus and procedure used to measure the excitation function of the 2p53p 3D3 state of neon. First I describe the effect on this excitation of negative ion resonances and previous experiments to measure the excitation function, as well as suggestions for future applications of such studies. Then the experimental apparatus is described in three parts. The vacuum system uses a turbomolecular pump to decrease the pressure of the chamber to as low as 4*10-9 Torr. The electron beam system incorporates a trochoidal electron monochromator to send a highly monochromatic beam …


Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer Mar 2021

Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer

Honors Theses

When an electron beam travels through space, it spreads out over time which impedes the ability to work with short electron pulses in the lab. A Wien filter is a device consisting of perpendicular electric and magnetic fields which filters charged particles based on their velocities. For a specific velocity, the two forces from the two fields in the filter cancel each other out letting charges with that velocity travel straight through the filter. Charges moving at other speeds are deflected as they have a net force applied to them from the filter. If a particle is deflected from the …


Design Of An Rf-Dipole Crabbing Cavity System For The Electron-Ion Collider, Subashini U. De Silva, Jean R. Delayen, H. Park, F. Marhauser, J. Henry, R. A. Rimmer Jan 2021

Design Of An Rf-Dipole Crabbing Cavity System For The Electron-Ion Collider, Subashini U. De Silva, Jean R. Delayen, H. Park, F. Marhauser, J. Henry, R. A. Rimmer

Physics Faculty Publications

The Electron-Ion Collider requires several crabbing systems to facilitate head-on collisions between electron and proton beams in increasing the luminosity at the interaction point. One of the critical rf systems is the 197 MHz crabbing system that will be used in crabbing the proton beam. Many factors such as the low operating frequency, large transverse voltage requirement, tight longitudinal and transverse impedance thresholds, and limited beam line space makes the crabbing cavity design challenging. The rf-dipole cavity design is considered as one of the crabbing cavity options for the 197 MHz crabbing system. The cavity is designed including the HOM …


Redesign Of The Jefferson Lab -300 Kv Dc Photo-Gun For High Bunch Charge Operations, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, C. Hernandez-Garcia, Geoffrey A. Krafft, Gabriel Palacios-Serrano, M.A. Mamun, M. Poelker, R. Suleiman Jan 2021

Redesign Of The Jefferson Lab -300 Kv Dc Photo-Gun For High Bunch Charge Operations, S.A.K. Wijethunga, J. Benesch, Jean R. Delayen, C. Hernandez-Garcia, Geoffrey A. Krafft, Gabriel Palacios-Serrano, M.A. Mamun, M. Poelker, R. Suleiman

Physics Faculty Publications

Production of high bunch charge beams for the ElectronIon Collider (EIC) is a challenging task. High bunch charge (a few nC) electron beam studies at Jefferson Lab using an inverted insulator DC high voltage photo-gun showed evidence of space charge limitations starting at 0.3 nC, limiting the maximum delivered bunch charge to 0.7 nC for beam at -225 kV, 75 ps (FWHM) pulse width, and 1.64 mm (rms) laser spot size. The low extracted charge is due to the modest longitudinal electric field (Ez) at the photocathode leading to beam loss at the anode and downstream beam pipe. To reach …


Few Body Effects In The Electron And Positron Impact Ionization Of Atoms, R. I. Campeanu, Colm T. Whelan Jan 2021

Few Body Effects In The Electron And Positron Impact Ionization Of Atoms, R. I. Campeanu, Colm T. Whelan

Physics Faculty Publications

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of energy sharing geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions that cannot be separately detected in an experiment with a single projectile. Results will be presented in kinematics where the electron impact ionization appears to be well understood and using the same kinematics positron cross sections will …


A Hard X-Ray Compton Source At Cbeta, K.E. Deitrick, J. Crone, C. Franck, G.H. Hoffstaetter, Geoffrey A. Krafft, B. D. Muratori, H. L. Owen, Balša Terzić, P. H. Williams Jan 2021

A Hard X-Ray Compton Source At Cbeta, K.E. Deitrick, J. Crone, C. Franck, G.H. Hoffstaetter, Geoffrey A. Krafft, B. D. Muratori, H. L. Owen, Balša Terzić, P. H. Williams

Physics Faculty Publications

Inverse Compton scattering (ICS) holds the potential for future high flux, narrow bandwidth x-ray sources driven by high quality, high repetition rate electron beams. CBETA, the Cornell-BNL Energy recovery linac (ERL) Test Accelerator, is the world’s first superconducting radiofrequency multi-turn ERL, with a maximum energy of 150 MeV, capable of ICS production of x-rays above 400 keV. We present an update on the bypass design and anticipated parameters of a compact ICS source at CBETA. X-ray parameters from the CBETA ICS are compared to those of leading synchrotron radiation facilities, demonstrating that, above a few hundred keV, photon beams produced …


Beam Dynamics Study In A Dual Energy Storage Ring For Ion Beam Cooling*, B. Dhital, Y. S. Derbenev, D. Douglas, A. Hutton, Geoffrey A. Krafft, F. Lin, V. S. Morozov, Y. Zhang Jan 2021

Beam Dynamics Study In A Dual Energy Storage Ring For Ion Beam Cooling*, B. Dhital, Y. S. Derbenev, D. Douglas, A. Hutton, Geoffrey A. Krafft, F. Lin, V. S. Morozov, Y. Zhang

Physics Faculty Publications

A dual energy storage ring designed for beam cooling consists of two closed rings with significantly different energies: the cooling and damping rings. These two rings are connected by an energy recovering superconducting RF structure that provides the necessary energy difference. In our design, the RF acceleration has a main linac and harmonic cavities both running at crest that at first accelerates the beam from low energy E_{L} to high energy E_{H} and then decelerates the beam from E_{H} to E_{L} in the next pass. The purpose of the harmonic cavities is to extend the bunch length in a dual …


Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a CW recirculating linac that utilizes over 400 superconducting radio-frequency (SRF) cavities to accelerate electrons up to 12 GeV through 5-passes. Recent work has shown that, given RF signals from a cavity during a fault as input, machine learning approaches can accurately classify the fault type. In this paper we report on initial results of predicting a fault onset using only data prior to the failure event. A data set was constructed using time-series data immediately before a fault (’unstable’) and 1.5 seconds prior to a fault (’stable’) gathered …