Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Correlations Between The Strange Quark Condensate, Strange Quark Mass, And Kaon Pcac Relation, Derek Harnett, Jason N.E. Ho, Tom G. Steele Jun 2021

Correlations Between The Strange Quark Condensate, Strange Quark Mass, And Kaon Pcac Relation, Derek Harnett, Jason N.E. Ho, Tom G. Steele

Faculty Work Comprehensive List

Correlations between the strange quark mass, strange quark condensate ⟨¯ss⟩, and the kaon partially conserved axial current (PCAC) relation are developed. The key dimensionless and renormalization-group invariant quantities in these correlations are the ratio of the strange to nonstrange quark mass rm=ms/mq, the condensate ratio rc=⟨¯ss⟩/⟨¯qq⟩, and the kaon PCAC deviation parameter rp=−ms⟨¯ss+¯qq⟩/2f2Km2K. The correlations define a self-consistent trajectory in the {rm,rc,rp} parameter space constraining strange quark parameters that can be used to assess the compatibility of different predictions of these parameters. Combining the constraint with Particle Data Group (PDG) values of rm results in {rc,rp} constraint trajectories that are …


On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman Jan 2021

On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman

Physics Faculty Publications

This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2 + J → 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and …


Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty Jan 2021

Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty

Physics Faculty Publications

We present a simple scheme for solving relativistic integral equations for the partial-wave projected three-body amplitudes. Our techniques are used to solve a problem of three scalar particles with a formation of a S-wave two-body bound state. We rewrite the problem in a form suitable for numerical solution and then explore three solving strategies. In particular, we discuss different ways of incorporating the bound-state pole contribution in the integral equations. All of them lead to agreement with previous results obtained using finite-volume spectra of the same theory, providing further evidence of the validity of the existing finite- and infinite-volume formalism …


Simultaneous Monte Carlo Analysis Of Parton Densities And Fragmentation Functions, Eric Moffat, W. Melnitchouk, Ted C. Rogers, N. Sato, Jefferson Lab Angular Momentum Collaboration Jan 2021

Simultaneous Monte Carlo Analysis Of Parton Densities And Fragmentation Functions, Eric Moffat, W. Melnitchouk, Ted C. Rogers, N. Sato, Jefferson Lab Angular Momentum Collaboration

Physics Faculty Publications

We perform a comprehensive new Monte Carlo analysis of high-energy lepton-lepton, lepton-hadron and hadron-hadron scattering data to simultaneously determine parton distribution functions (PDFs) in the proton and parton to hadron fragmentation functions (FFs). The analysis includes all available semi-inclusive deep-inelastic scattering and single-inclusive e+e annihilation data for pions, kaons and unidentified charged hadrons, which allows the flavor dependence of the fragmentation functions to be constrained. Employing a new multistep fitting strategy and more flexible parametrizations for both PDFs and FFs, we assess the impact of different datasets on sea quark densities and confirm the previously observed suppression …