Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 181 - 210 of 1051

Full-Text Articles in Physics

Software Validation And Data Quality Monitoring Of The Klm Detector At Belle Ii., Dustyn Hofer May 2021

Software Validation And Data Quality Monitoring Of The Klm Detector At Belle Ii., Dustyn Hofer

College of Arts & Sciences Senior Honors Theses

The Belle II Experiment at the SuperKEKB collider in Tsukuba, Japan is the latest of a new generation of B-factory experiments, designed to produce B meson particles in abundance. The aim of the Belle II experiment is to "discover new physics in the decay of the bottom quark (b), charm quark (c) and tau lepton (τ) and explore the dark sector." The SuperKEKB collider aims to produce instantaneous luminosities of upwards of 8 × 1035 cm−2 s−1, nearly an order of magnitude higher than previous B- factory experiments Belle and BABAR. Software packages, such as physics modules for the popular …


Measuring Electron Diffusion And Constraining The Neutral Current Π0 Background For Single-Photon Events In Microboone, Andrew Mogan May 2021

Measuring Electron Diffusion And Constraining The Neutral Current Π0 Background For Single-Photon Events In Microboone, Andrew Mogan

Doctoral Dissertations

Liquid Argon Time Projection Chambers (LArTPCs) are a rising technology in the field of experimental neutrino physics. LArTPCs use ionization electrons and scintillation light to reconstruct neutrino interactions with exceptional calorimetric and position resolution capabilities. Here, I present two analyses conducted in the MicroBooNE LArTPC at Fermilab: a measurement of the longitudinal electron diffusion coefficient, DL, in the MicroBooNE detector and a constraint of the systematic uncertainty on MicroBooNE's single-photon analysis due to the dominant neutral current (NC) π0 background. Longitudinal electron diffusion modifies the spatial and timing resolution of the detector, and measuring it will help correct for these …


Study Of Neutral Hadron Production In A High Intensity Particle Physics Experiment., Jake W. Berg May 2021

Study Of Neutral Hadron Production In A High Intensity Particle Physics Experiment., Jake W. Berg

Electronic Theses and Dissertations

In this dissertation I present independent measurements of the multiplicities, R, of π0 and η mesons produced in annihilation interactions of electrons and positrons at a center-of-mass energy of 10.54 GeV. Data were collected using the BaBar detector at the PEP-II storage rings located at the SLAC National Accelerator Laboratory in Menlo Park, California. Both mesons have a decay mode to two photons, which is used to identify them and measure their production per event. I find R0) = 2.8±0.3 per event and R(η) = 0.25±0.03 per event. I also present my contributions to …


Detecting The Phi Meson With Clas12, Paul Simmerling May 2021

Detecting The Phi Meson With Clas12, Paul Simmerling

Honors Scholar Theses

Analysis and detection of the phi(1020) vector meson from exclusive electroproduction decay into Kaons have been performed. Studying exclusive phi electroproduction is an ideal channel for quantifying the gluonic properties of the nucleon. This detection used the CEBAF Large Acceptance Spectrometer (CLAS12) at Thomas Jefferson National Accelerator Facility (JLab) with a 10.6 GeV longitudinally polarized electron beam and an unpolarized hydrogen target. Using the detected final state particles phase space, x_B, Q^2, W, and by developing specialized exclusivity cuts as well as several additional cuts, events containing the production of a phi(1020) meson were able to be extracted. Additionally, a …


Curved Spacetime In The Causal Set Approach To Quantum Gravity, Ayush Dhital May 2021

Curved Spacetime In The Causal Set Approach To Quantum Gravity, Ayush Dhital

Honors Theses

Causal Set theory is an approach to quantum gravity. In this approach, the spacetime continuum is assumed to be discrete rather than continuous. The discrete points in a causal set can be seen as a continuum spacetime if they can be embedded in a manifold such that the causal structure is preserved. In this regard, a manifold can be constructed by embedding a causal set preserving causal information between the neighboring points. In this thesis, some of the fundamental properties of causal sets are discussed and the curvature and dimension information of Minkowski, de Sitter, and Anti-de Sitter spaces is …


Composite Gravity In Curved Spacetime, Austin Batz May 2021

Composite Gravity In Curved Spacetime, Austin Batz

Undergraduate Honors Theses

This work presents the development of a quantum theory of gravity motivated by diffeomorphism-invariance and background-independence. A composite graviton state that satisfies the linearized Einstein’s field equations has been identified via perturbative expansion about a curved vacuum spacetime. The emergence of this gravitational interaction is discussed, as well as cancellation of tadpoles and treatment of ultraviolet divergences via dimensional regularization. In other words, the formalism of quantum field theory is used to identify a gravitational interaction as an emergent phenomenon rather than as a fundamental aspect of nature. The lattice is proposed as a candidate for a physical regulator, and …


Exploring Manifoldlike Causal Sets And Their Dimensions, Santosh Bhandari Apr 2021

Exploring Manifoldlike Causal Sets And Their Dimensions, Santosh Bhandari

Honors Theses

Causal Set Theory is an approach to quantum gravity that tries to replace the continuum spacetime structure of general relativity with the spacetime that has the property of discreteness and causality. From the standpoint of causal set theory, our spacetime is made up of discrete points that are causally related to one another. A causal set is said to be manifoldlike if it can be faithfully embedded in a Lorentzian manifold. In this thesis, some of the fundamental properties of causal sets are discussed. The first chapter is devoted to the historical background of quantum gravity with a discussion of …


A Search For New Physics In B(S) To Mu+Mu- Decays Using Multivariate Data Analysis, And Development Of Particle Detection Technology With Silicon Pixel Detectors, Aidan Grummer Apr 2021

A Search For New Physics In B(S) To Mu+Mu- Decays Using Multivariate Data Analysis, And Development Of Particle Detection Technology With Silicon Pixel Detectors, Aidan Grummer

Physics & Astronomy ETDs

A suite of linked research projects is undertaken, combining a search for phenomena beyond the Standard Model of particle physics, development of new instruments for greater precision in detecting fundamental particles, and tracking and understanding the effect upon the detectors of the radiation that is an indelible element of their operating environment. Data recorded by the ATLAS Detector at CERN are employed in a search for evidence of undiscovered particles contributing to the rate of decays of B0 and B0s mesons to dimuon final states. New applications of machine learning techniques are implemented to separate this signal …


Geometrization Of Hawking Radiation Via Ricci Flow, Alexander Cassem Apr 2021

Geometrization Of Hawking Radiation Via Ricci Flow, Alexander Cassem

Ramaley Celebration

In 1982, Richard S. Hamilton formulated Ricci flow along manifolds of three dimensions of positive Ricci curvature as an attempt to resolve Poincaré’s Conjecture. However, it took until 2006 by Grigori Perelman to resolve the conjecture with Ricci flow. Since then, research in pure mathematics on Ricci Flow increased exponentially, and people began to apply it towards physics. For example, Ricci flow has been found to be the Renormalization Group flow of the bosonic string and sigma model. However, Ricci flow’s analogous counterpart being the heat equation, makes it appear to have more applications. For this reason, we have studied …


A Search For New Resonances Decaying Into A Weak Vector Boson And A Higgs Boson In Hadronic Final States With The Atlas Detector At The Large Hadron Collider, Zachary Alden Meadows Apr 2021

A Search For New Resonances Decaying Into A Weak Vector Boson And A Higgs Boson In Hadronic Final States With The Atlas Detector At The Large Hadron Collider, Zachary Alden Meadows

Doctoral Dissertations

A search for heavy resonances decaying to a $W$ or $Z$ boson and a Higgs boson in the final state is described. The search uses $139\ \mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the CERN Large Hadron Collider from 2015 to 2018. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching fraction for resonances decaying into a W/Z boson and a Higgs boson in the mass range between 1.2 to 5 TeV.


Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat Apr 2021

Exploring Qcd Factorization At Moderate Energy Scales, Eric Alan Moffat

Physics Theses & Dissertations

Asymptotic freedom in QCD facilitates the use of partonic degrees of freedom over short distances, but physical processes are sensitive to a wide range of scales. Thus, it is necessary in QCD calculations to utilize a factorization scheme to separate a process into perturbative and non-perturbative factors. This separation relies on an assumption that one energy scale is infinitely larger than the other scales involved in the process. However, much experimental research in areas such as nucleon structure and quark-hadron duality occur at more moderate energy scales where that basic assumption may not be true but perturbative calculations should still …


Copper Clusters: Study Of Geometric Structure Using Computer Simulation, Nodirbek Ikromjonovich Ibrokhimov Mar 2021

Copper Clusters: Study Of Geometric Structure Using Computer Simulation, Nodirbek Ikromjonovich Ibrokhimov

Karakalpak Scientific Journal

In this work, we investigated the geometric structure of small neutral copper clusters with low energy using the MD (Molecular Dynamics) method. When calculating the processes of interatomic interaction, we used a potential EAM (Embedded-atom method). A computer model of Cun (n = 2-13) clusters has been created. The geometric shapes of the Cu2, Cu3, Cu4, Cu5, Cu6, Cu7, Cu8, Cu9, Cu10, Cu11, Cu12, and Cu13 clusters have been studied and the structural parameters (Cu-Cu bond …


Lorentz Violation In Neutrino Interactions, Pranav Jayaram Seetharaman Mar 2021

Lorentz Violation In Neutrino Interactions, Pranav Jayaram Seetharaman

Physics

Both the Standard Model of particle physics and General Relativity require Lorentz symmetry as a fundamental building block. In this paper, we learn about a framework called the Standard Model Extension that allows us to determine how physical phenomenon would change if we deviated from Lorentz invariance in the Standard Model and General Relativity. We use the Standard Model Extension to analyze a specific high-energy, astrophysical neutrino interaction that is only possible if Lorentz symmetry can be broken. The interaction we look at is the decay of a neutrino into an electron-positron pair, which is not possible in conventional physics. …


Extracting The Number Of Short Range Correlated Nucleon Pairs From Inclusive Electron Scattering Data, R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, N. Barnea Mar 2021

Extracting The Number Of Short Range Correlated Nucleon Pairs From Inclusive Electron Scattering Data, R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, N. Barnea

Physics Faculty Publications

The extraction of the relative abundances of short-range correlated (SRC) nucleon pairs from inclusive electron scattering is studied using the generalized contact formalism (GCF) with several nuclear interaction models. GCF calculations can reproduce the observed scaling of the cross-section ratios for nuclei relative to deuterium at high xB and large Q2, a2 = (σA/A)/(σd/2). In the nonrelativistic instant-form formulation, the calculation is very sensitive to the model parameters and only reproduces the data using parameters that are inconsistent with ab initio many-body calculations. Using a light-cone GCF formulation significantly decreases this sensitivity …


Search For Supersymmetry In Events With Four Or More Charged Leptons In 139 Fb−1 Of S√ = 13 Tev Pp Collisions With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama Sherif Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz Jan 2021

Search For Supersymmetry In Events With Four Or More Charged Leptons In 139 Fb−1 Of S√ = 13 Tev Pp Collisions With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama Sherif Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz

Physics Department Faculty Publication Series

A search for supersymmetry in events with four or more charged leptons (electrons, muons and tau-leptons) is presented. The analysis uses a data sample corresponding to 139 fb(-1) of proton-proton collisions delivered by the Large Hadron Collider at root s = 13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying tau-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set …


Search For Squarks And Gluinos In Final States With One Isolated Lepton, Jets, And Missing Transverse Momentum At S√=13 Tev With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz Jan 2021

Search For Squarks And Gluinos In Final States With One Isolated Lepton, Jets, And Missing Transverse Momentum At S√=13 Tev With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz

Physics Department Faculty Publication Series

The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ((chi) over tilde (0)(1)), and quarks, are presented: the signal is characterised by the presence of a single charged lepton (e(+/-) or mu(+/-)) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb(-1) of proton-proton collision data taken at a centre-of-mass energy root s = 13 delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess …


Search For Pair Production Of Third-Generation Scalar Leptoquarks Decaying Into A Top Quark And A Τ-Lepton In Pp Collisions At S√ = 13 Tev With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Dale K. Abhayasinghe, Syed H. Abidi, Ossama S. Abouzeid, Nicola L. Abraham, Halina Abramowicz Jan 2021

Search For Pair Production Of Third-Generation Scalar Leptoquarks Decaying Into A Top Quark And A Τ-Lepton In Pp Collisions At S√ = 13 Tev With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Dale K. Abhayasinghe, Syed H. Abidi, Ossama S. Abouzeid, Nicola L. Abraham, Halina Abramowicz

Physics Department Faculty Publication Series

A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a tau-lepton is presented. The search is based on a dataset of pp collisions at root s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb(-1). Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying tau-lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing b-hadrons, are required. …


Muon Reconstruction And Identification Efficiency In Atlas Using The Full Run 2 Pp Collision Data Set At S√=13 Tev, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Abouzeid, Nicola L. Abraham, Halina Abramowicz Jan 2021

Muon Reconstruction And Identification Efficiency In Atlas Using The Full Run 2 Pp Collision Data Set At S√=13 Tev, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Abouzeid, Nicola L. Abraham, Halina Abramowicz

Physics Department Faculty Publication Series

This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 fb-1 of pp collision data at s=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z -> mu mu and J/psi -> mu mu decays, and the minimisation of …


A Real Triplet-Singlet Extended Standard Model: Dark Matter And Collider Phenomenology, Nicole F. Bell, Matthew J. Dolan, Leon S. Friedrich, Michael J. Ramsey-Musolf, Raymond R. Volkas Jan 2021

A Real Triplet-Singlet Extended Standard Model: Dark Matter And Collider Phenomenology, Nicole F. Bell, Matthew J. Dolan, Leon S. Friedrich, Michael J. Ramsey-Musolf, Raymond R. Volkas

Physics Department Faculty Publication Series

We examine the collider and dark matter phenomenology of the Standard Model extended by a hypercharge-zero SU(2) triplet scalar and gauge singlet scalar. In particular, we study the scenario where the singlet and triplet are both charged under a single Z(2) symmetry. We find that such an extension is capable of generating the observed dark matter density, while also modifying the collider phenomenology such that the lower bound on the mass of the triplet is smaller than in minimal triplet scalar extensions to the Standard Model. A high triplet mass is in tension with the parameter space that leads to …


New Precise Spectroscopy Of The Hyperfine Structure In Muonium With A High-Intensity Pulsed Muon Beam, S. Kanda, Y. Fukao, Y. Ikedo, K. Ishida, M. Iwasaki, D. Kawall, N. Kawamura, K. M. Kojima, N. Kurosawa, Y. Matsuda Jan 2021

New Precise Spectroscopy Of The Hyperfine Structure In Muonium With A High-Intensity Pulsed Muon Beam, S. Kanda, Y. Fukao, Y. Ikedo, K. Ishida, M. Iwasaki, D. Kawall, N. Kawamura, K. M. Kojima, N. Kurosawa, Y. Matsuda

Physics Department Faculty Publication Series

A hydrogen-like atom consisting of a positive muon and an electron is known as muonium. It is a near-ideal two-body system for a precision test of bound-state theory and fundamental symmetries. The MuSEUM collaboration performed a new precision measurement of the muonium ground-state hyperfine structure at J-PARC using a high-intensity pulsed muon beam and a high-rate capable positron counter. The resonance of hyperfine transition was successfully observed at a near-zero magnetic field, and the muonium hyperfine structure interval of nu(HFS) = 4.463302(4) GHz was obtained with a relative precision of 0.9 ppm. The result was consistent with the previous ones …


Measurements Of W+W−+ ≥ 1 Jet Production Cross-Sections In Pp Collisions At S√ = 13 Tev With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz Jan 2021

Measurements Of W+W−+ ≥ 1 Jet Production Cross-Sections In Pp Collisions At S√ = 13 Tev With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz

Physics Department Faculty Publication Series

Fiducial and differential cross-section measurements of W+W- production in association with at least one hadronic jet are presented. These measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton-proton collision data collected at s = 13 TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139 fb(-1). Events are selected with exactly one oppositely charged electron-muon pair and at least one hadronic jet with a transverse momentum of p(T)> 30 GeV and a pseudorapidity of |eta| < 4.5. After subtracting the background contributions and correcting for detector effects, the jet-inclusive W+W-+ >= 1 jet fiducial cross-section …


Temporal Coherent Control Of Resonant Two-Photon Double Ionization Of The Hydrogen Molecule Via Doubly Excited States, Jean Marcel Ngoko Djiokap, Anthony F. Starace Jan 2021

Temporal Coherent Control Of Resonant Two-Photon Double Ionization Of The Hydrogen Molecule Via Doubly Excited States, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

We use time-delayed, counter-rotating, circularly polarized few-cycle attosecond nonoverlapping pulses to study the temporal coherent control of the resonant process of two-photon double ionization (TPDI) of hydrogen molecule via doubly excited states for pulse propagation direction along ˆk either parallel or perpendicular to the molecular axis ˆR. For ˆk ‖ ˆR and a pulse carrier frequency of 36 eV resonantly populating the Q2 1∏ + u (1) doubly excited state as well as other 1∏ + u doubly excited states, we find that the indirect ionization pathway through these doubly excited states changes the character of the kinematical vortex-shaped …


Measurement Of The Cross Section Of Top Quark Pairs Produced In Association With A Photon In Lepton + Jets Events At √S = 13 Tev With Full Runii Cms Data, Nabin Poudyal Jan 2021

Measurement Of The Cross Section Of Top Quark Pairs Produced In Association With A Photon In Lepton + Jets Events At √S = 13 Tev With Full Runii Cms Data, Nabin Poudyal

Wayne State University Dissertations

The inclusive production cross section of top quark pairs in association with a photon is measured in proton-proton collisions at the LHC with 13 TeV energy using the full RunII data collected by CMS in 2016, 2017, and 2018 with a total corresponding integrated luminosity of 137 fb −1 . The relative fraction of ttγ events normalized to inclusive tt production is measured. The cross section measurement provides important information about the electromagnetic coupling of the standard model top quark and is sensitive to physics beyond the standard model. The analysis is carried out in the in semileptonic decay channel …


Measurements Of Differential Cross-Sections In Four-Lepton Events In 13 Tev Proton-Proton Collisions With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz Jan 2021

Measurements Of Differential Cross-Sections In Four-Lepton Events In 13 Tev Proton-Proton Collisions With The Atlas Detector, Georges Aad, Braden Abbott, Dale C. Abbott, Adam Abed Abud, Kira Abeling, Deshan K. Abhayasinghe, Syed H. Abidi, Ossama S. Alexander Abouzeid, Nicola L. Abraham, Halina Abramowicz

Physics Department Faculty Publication Series

Measurements of four-lepton differential and integrated fiducial cross-sections in events with two same-flavour, opposite-charge electron or muon pairs are presented. The data correspond to 139 fb(-1) of root s = 13 TeV proton-proton collisions, collected by the ATLAS detector during Run 2 of the Large Hadron Collider (2015-2018). The final state has contributions from a number of interesting Standard Model processes that dominate in different four-lepton invariant mass regions, including single Z boson production, Higgs boson production and on-shell ZZ production, with a complex mix of interference terms, and possible contributions from physics beyond the Standard Model. The differential cross-sections …


Solutions To Fermi Questions, Feb. 2021, Larry Weinstein Jan 2021

Solutions To Fermi Questions, Feb. 2021, Larry Weinstein

Physics Faculty Publications

Solutions for Fermi Questions, Feb. 2021. How many visible photons per second does a light bulb emit? How much does the U.S. spend on residential lightbulbs (both the bulbs and the electricity) every year?


Effective Field Theory Applications: From Dark Matter To Neutrino Nucleon Scattering, Qing Chen Jan 2021

Effective Field Theory Applications: From Dark Matter To Neutrino Nucleon Scattering, Qing Chen

Theses and Dissertations--Physics and Astronomy

Weakly-interacting-massive-particles (WIMPs) are a large class of viable dark matter candidates. We compute cross sections for electroweak-doublet WIMPs scattering on atomic nuclei, at leading and subleading order using heavy WIMP effective field theory. Neutrino-nucleon charged current elastic scattering is an important process in the detectors of long baseline accelerator neutrino oscillation experiments. We compute QED radiative corrections to this process employing soft-collinear effective field theory.


Evaluation Of Anisotropic Magnetoresistive (Amr) Sensors For A Magnetic Field Scanning System For Srf Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich Jan 2021

Evaluation Of Anisotropic Magnetoresistive (Amr) Sensors For A Magnetic Field Scanning System For Srf Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich

Physics Faculty Publications

One of the significant causes of residual losses in superconducting radio-frequency (SRF) cavities is trapped magnetic flux. The flux trapping mechanism depends on many factors that include cool-down conditions, surface preparation techniques, and ambient magnetic field orientation. Suitable diagnostic tools are not yet available to quantitatively correlate such factors’ effect on the flux trapping mechanism. A magnetic field scanning system (MFSS) consisting of AMR sensors, fluxgate magnetometers, or Hall probes is recently commissioned to scan the local magnetic field of trapped vortices around 1.3 GHz single-cell SRF cavities. In this contribution, we will present results from sensitivity calibration and the …


Hom Damper Design For Bnl Eic 197mhz Crab Cavity, Binping Xiao, Jean R. Delayen, Subashini U. De Silva, Z. Li, R. Rimmer, S. Verdu-Andres, Qiong Wu Jan 2021

Hom Damper Design For Bnl Eic 197mhz Crab Cavity, Binping Xiao, Jean R. Delayen, Subashini U. De Silva, Z. Li, R. Rimmer, S. Verdu-Andres, Qiong Wu

Physics Faculty Publications

The interaction region (IR) crab cavity system is a special RF system to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point (IP) for Brookhaven National Lab electron ion collider (BNL EIC). There will be six crab cavities, with four 197 MHz crab cavities and two 394 MHz crab cavities, installed on each side of the IP in the proton/ion ring, and one 394 MHz crab cavity on each side of the IP in the electron ring. Both rings share identical 394 MHz crab cavity design to minimize the cost and risk in …


Renormalization And Mixing Of Staple-Shaped Wilson Line Operators On The Lattice Revisited, Yao Ji, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu Jan 2021

Renormalization And Mixing Of Staple-Shaped Wilson Line Operators On The Lattice Revisited, Yao Ji, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu

Physics Faculty Publications

Transverse-momentum-dependent parton distribution functions and wave functions (TMDPDFs/TMDWFs) can be extracted from lattice calculations of appropriate Euclidean matrix elements of staple-shaped Wilson line operators. We investigate the mixing pattern of such operators under lattice renormalization using symmetry considerations. We perform an analysis for operators with all Dirac structures, which reveals mixings that are not present in one-loop lattice perturbation theory calculations. We also present the relevant one-loop matching in a renormalization scheme that does not introduce extra nonperturbative effects at large distances, both for the TMDPDFs and for the TMDWFs. Our results have the potential to greatly facilitate numerical calculations …


Role Of Boundary Conditions In Quantum Computations Of Scattering Observables, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu Jan 2021

Role Of Boundary Conditions In Quantum Computations Of Scattering Observables, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu

Physics Faculty Publications

Quantum computing may offer the opportunity to simulate strongly interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Briceno et al. [Phys. Rev. D 101, 014509 (2020)], we estimate the volume effects for various …