Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 138

Full-Text Articles in Theory and Algorithms

Modeling And Analysis Of Affiliation Networks With Subsumption, Alexey Nikolaev Feb 2021

Modeling And Analysis Of Affiliation Networks With Subsumption, Alexey Nikolaev

Dissertations, Theses, and Capstone Projects

An affiliation (or two-mode) network is an abstraction commonly used for representing systems with group interactions. It consists of a set of nodes and a set of their groupings called affiliations. We introduce the notion of affiliation network with subsumption, in which no affiliation can be a subset of another. A network with this property can be modeled by an abstract simplicial complex whose facets are the affiliations of the network.

We introduce a new model for generating affiliation networks with and without subsumption (represented as simplicial complexes and hypergraphs, respectively). In this model, at each iteration, a constant number …


Scaling Up Exact Neural Network Compression By Relu Stability, Thiago Serra, Xin Yu, Abhinav Kumar, Srikumar Ramalingam Jan 2021

Scaling Up Exact Neural Network Compression By Relu Stability, Thiago Serra, Xin Yu, Abhinav Kumar, Srikumar Ramalingam

Faculty Conference Papers and Presentations

We can compress a rectifier network while exactly preserving its underlying functionality with respect to a given input domain if some of its neurons are stable. However, current approaches to determine the stability of neurons with Rectified Linear Unit (ReLU) activations require solving or finding a good approximation to multiple discrete optimization problems. In this work, we introduce an algorithm based on solving a single optimization problem to identify all stable neurons. Our approach is on median 183 times faster than the state-of-art method on CIFAR-10, which allows us to explore exact compression on deeper (5 x 100) and wider …


Optimal Construction Of A Layer-Ordered Heap And Its Applications, Jake Pennington Jan 2021

Optimal Construction Of A Layer-Ordered Heap And Its Applications, Jake Pennington

Graduate Student Theses, Dissertations, & Professional Papers

The layer-ordered heap (LOH) is a simple data structure used in algorithms that perform optimal top-$k$ on $X+Y$, algorithms with the best known runtime for top-$k$ on $X_1+X_2+\cdots+X_m$, and the fastest method in practice for computing the most abundant isotopologue peaks in a chemical compound. In the analysis of these algorithms, the rank, $\alpha$, has been treated as a constant and $n$, the size of the array, has been treated as the sole parameter. Here, we explore the algorithmic complexity of LOH construction with $\alpha$ as a parameter, introduce a few algorithms for constructing LOHs, analyze their complexity in both …


Controlling Aircraft Yaw Movement By Interval Type-2 Fuzzy Logic, Yamama Shafeek, Laith Majeed, Rasha Naji Oct 2020

Controlling Aircraft Yaw Movement By Interval Type-2 Fuzzy Logic, Yamama Shafeek, Laith Majeed, Rasha Naji

Emirates Journal for Engineering Research

Aircraft yaw movement is essential in maneuvering; it has been controlled by some methods which achieved tracking but not fast enough. This paper performs the dynamic modeling of aircraft yaw movement and develops PI and PI-like interval type-2 fuzzy logic controller for the model. The mathematical model is derived by inserting the parameters values of single-engine Navion aircraft into standard equations. Using Matlab/ Simulink platform, the controllers' effectivity is tested and verified in two different cases; system without disturbance and when system is disturbed by some wind gust to investigate the system robustness. Simulation results show that PI controller response …


Espade: An Efficient And Semantically Secure Shortest Path Discovery For Outsourced Location-Based Services, Bharath K. Samanthula, Divyadharshini Karthikeyan, Boxiang Dong, K. Anitha Kumari Oct 2020

Espade: An Efficient And Semantically Secure Shortest Path Discovery For Outsourced Location-Based Services, Bharath K. Samanthula, Divyadharshini Karthikeyan, Boxiang Dong, K. Anitha Kumari

Department of Computer Science Faculty Scholarship and Creative Works

With the rapid growth of smart devices and technological advancements in tracking geospatial data, the demand for Location-Based Services (LBS) is facing a constant rise in several domains, including military, healthcare and transportation. It is a natural step to migrate LBS to a cloud environment to achieve on-demand scalability and increased resiliency. Nonetheless, outsourcing sensitive location data to a third-party cloud provider raises a host of privacy concerns as the data owners have reduced visibility and control over the outsourced data. In this paper, we consider outsourced LBS where users want to retrieve map directions without disclosing their location information. …


Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah May 2020

Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah

Honors Scholar Theses

Many current algorithms and approaches in autonomous driving attempt to solve the "trajectory generation" or "trajectory following” problems: given a target behavior (e.g. stay in the current lane at the speed limit or change lane), what trajectory should the vehicle follow, and what inputs should the driving agent apply to the throttle and brake to achieve this trajectory? In this work, we instead focus on the “behavior planning” problem—specifically, should an autonomous vehicle change lane or keep lane given the current state of the system?

In addition, current theory mainly focuses on single-vehicle systems, where vehicles do not communicate with …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Storage Management Strategy In Mobile Phones For Photo Crowdsensing, En Wang, Zhengdao Qu, Xinyao Liang, Xiangyu Meng, Yongjian Yang, Dawei Li, Weibin Meng Apr 2020

Storage Management Strategy In Mobile Phones For Photo Crowdsensing, En Wang, Zhengdao Qu, Xinyao Liang, Xiangyu Meng, Yongjian Yang, Dawei Li, Weibin Meng

Department of Computer Science Faculty Scholarship and Creative Works

In mobile crowdsensing, some users jointly finish a sensing task through the sensors equipped in their intelligent terminals. In particular, the photo crowdsensing based on Mobile Edge Computing (MEC) collects pictures for some specific targets or events and uploads them to nearby edge servers, which leads to richer data content and more efficient data storage compared with the common mobile crowdsensing; hence, it has attracted an important amount of attention recently. However, the mobile users prefer uploading the photos through Wifi APs (PoIs) rather than cellular networks. Therefore, photos stored in mobile phones are exchanged among users, in order to …


Certified Functions For Mesh Generation, Andrey N. Chernikov Jan 2020

Certified Functions For Mesh Generation, Andrey N. Chernikov

Chemistry & Biochemistry Faculty Publications

Formal methods allow for building correct-by-construction software with provable guarantees. The formal development presented here resulted in certified executable functions for mesh generation. The term certified means that their correctness is established via an artifact, or certificate, which is a statement of these functions in a formal language along with the proofs of their correctness. The term is meaningful only when qualified by a specific set of properties that are proven. This manuscript elaborates on the precise statements of the properties being proven and their role in an implementation of a version of the Isosurface Stuffing algorithm by Labelle and …


Randomized Algorithms For Preconditioner Selection With Applications To Kernel Regression, Conner Dipaolo Jan 2019

Randomized Algorithms For Preconditioner Selection With Applications To Kernel Regression, Conner Dipaolo

HMC Senior Theses

The task of choosing a preconditioner M to use when solving a linear system Ax=b with iterative methods is often tedious and most methods remain ad-hoc. This thesis presents a randomized algorithm to make this chore less painful through use of randomized algorithms for estimating traces. In particular, we show that the preconditioner stability || I - M-1A ||F, known to forecast preconditioner quality, can be computed in the time it takes to run a constant number of iterations of conjugate gradients through use of sketching methods. This is in spite of folklore which …


A Mathematical Framework On Machine Learning: Theory And Application, Bin Shi Nov 2018

A Mathematical Framework On Machine Learning: Theory And Application, Bin Shi

FIU Electronic Theses and Dissertations

The dissertation addresses the research topics of machine learning outlined below. We developed the theory about traditional first-order algorithms from convex opti- mization and provide new insights in nonconvex objective functions from machine learning. Based on the theory analysis, we designed and developed new algorithms to overcome the difficulty of nonconvex objective and to accelerate the speed to obtain the desired result. In this thesis, we answer the two questions: (1) How to design a step size for gradient descent with random initialization? (2) Can we accelerate the current convex optimization algorithms and improve them into nonconvex objective? For application, …


Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera Oct 2018

Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera

Sirani Mututhanthrige Perera

In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n􀀀1) points signal flow graph for DST-I and n points signal flow graphs for DST II-IV.


High-Order Integral Equation Methods For Quasi-Magnetostatic And Corrosion-Related Field Analysis With Maritime Applications, Robert Pfeiffer Jan 2018

High-Order Integral Equation Methods For Quasi-Magnetostatic And Corrosion-Related Field Analysis With Maritime Applications, Robert Pfeiffer

Theses and Dissertations--Electrical and Computer Engineering

This dissertation presents techniques for high-order simulation of electromagnetic fields, particularly for problems involving ships with ferromagnetic hulls and active corrosion-protection systems.

A set of numerically constrained hexahedral basis functions for volume integral equation discretization is presented in a method-of-moments context. Test simulations demonstrate the accuracy achievable with these functions as well as the improvement brought about in system conditioning when compared to other basis sets.

A general method for converting between a locally-corrected Nyström discretization of an integral equation and a method-of-moments discretization is presented next. Several problems involving conducting and magnetic-conducting materials are solved to verify the accuracy …


High-Order Relaxed Multirate Infinitesimal Step Methods For Multiphysics Applications, Jean Sexton Oct 2017

High-Order Relaxed Multirate Infinitesimal Step Methods For Multiphysics Applications, Jean Sexton

Mathematics Theses and Dissertations

In this work, we consider numerical methods for integrating multirate ordinary differential equations. We are interested in the development of new multirate methods with good stability properties and improved efficiency over existing methods. We discuss the development of multirate methods, particularly focusing on those that are based on Runge-Kutta theory. We introduce the theory of Generalized Additive Runge-Kutta methods proposed by Sandu and Günther. We also introduce the theory of Recursive Flux Splitting Multirate Methods with Sub-cycling described by Schlegel, as well as the Multirate Infinitesimal Step methods this work is based on. We propose a generic structure called Flexible …


Large-Scale Online Feature Selection For Ultra-High Dimensional Sparse Data, Yue Wu, Steven C. H. Hoi, Tao Mei, Nenghai Yu Aug 2017

Large-Scale Online Feature Selection For Ultra-High Dimensional Sparse Data, Yue Wu, Steven C. H. Hoi, Tao Mei, Nenghai Yu

Research Collection School Of Computing and Information Systems

Feature selection (FS) is an important technique in machine learning and data mining, especially for large scale high-dimensional data. Most existing studies have been restricted to batch learning, which is often inefficient and poorly scalable when handling big data in real world. As real data may arrive sequentially and continuously, batch learning has to retrain the model for the new coming data, which is very computationally intensive. Online feature selection (OFS) is a promising new paradigm that is more efficient and scalable than batch learning algorithms. However, existing online algorithms usually fall short in their inferior efficacy. In this article, …


Scalable And Fully Distributed Localization In Large-Scale Sensor Networks, Miao Jin, Su Xia, Hongyi Wu, Xianfeng David Gu Jun 2017

Scalable And Fully Distributed Localization In Large-Scale Sensor Networks, Miao Jin, Su Xia, Hongyi Wu, Xianfeng David Gu

Electrical & Computer Engineering Faculty Publications

This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and communication costs with respect to the size of the network; and fully distributed where each node only needs the information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable. Moreover, the algorithm can be readily extended to the localization of networks with a one-hop transmission range distance measurement, and the propagation of …


Electrodynamical Modeling For Light Transport Simulation, Michael G. Saunders May 2017

Electrodynamical Modeling For Light Transport Simulation, Michael G. Saunders

Undergraduate Honors Theses

Modernity in the computer graphics community is characterized by a burgeoning interest in physically based rendering techniques. That is to say that mathematical reasoning from first principles is widely preferred to ad hoc, approximate reasoning in blind pursuit of photorealism. Thereby, the purpose of our research is to investigate the efficacy of explicit electrodynamical modeling by means of the generalized Jones vector given by Azzam [1] and the generalized Jones matrix given by Ortega-Quijano & Arce-Diego [2] in the context of stochastic light transport simulation for computer graphics. To augment the status quo path tracing framework with such a modeling …


Triple Non-Negative Matrix Factorization Technique For Sentiment Analysis And Topic Modeling, Alexander A. Waggoner Jan 2017

Triple Non-Negative Matrix Factorization Technique For Sentiment Analysis And Topic Modeling, Alexander A. Waggoner

CMC Senior Theses

Topic modeling refers to the process of algorithmically sorting documents into categories based on some common relationship between the documents. This common relationship between the documents is considered the “topic” of the documents. Sentiment analysis refers to the process of algorithmically sorting a document into a positive or negative category depending whether this document expresses a positive or negative opinion on its respective topic. In this paper, I consider the open problem of document classification into a topic category, as well as a sentiment category. This has a direct application to the retail industry where companies may want to scour …


Network Analytics For The Mirna Regulome And Mirna-Disease Interactions, Joseph Jayakar Nalluri Jan 2017

Network Analytics For The Mirna Regulome And Mirna-Disease Interactions, Joseph Jayakar Nalluri

Theses and Dissertations

miRNAs are non-coding RNAs of approx. 22 nucleotides in length that inhibit gene expression at the post-transcriptional level. By virtue of this gene regulation mechanism, miRNAs play a critical role in several biological processes and patho-physiological conditions, including cancers. miRNA behavior is a result of a multi-level complex interaction network involving miRNA-mRNA, TF-miRNA-gene, and miRNA-chemical interactions; hence the precise patterns through which a miRNA regulates a certain disease(s) are still elusive. Herein, I have developed an integrative genomics methods/pipeline to (i) build a miRNA regulomics and data analytics repository, (ii) create/model these interactions into networks and use optimization techniques, motif …


Network Inference Driven Drug Discovery, Gergely Zahoránszky-Kőhalmi, Tudor I. Oprea Md, Phd, Cristian G. Bologa Phd, Subramani Mani Md, Phd, Oleg Ursu Phd Nov 2016

Network Inference Driven Drug Discovery, Gergely Zahoránszky-Kőhalmi, Tudor I. Oprea Md, Phd, Cristian G. Bologa Phd, Subramani Mani Md, Phd, Oleg Ursu Phd

Biomedical Sciences ETDs

The application of rational drug design principles in the era of network-pharmacology requires the investigation of drug-target and target-target interactions in order to design new drugs. The presented research was aimed at developing novel computational methods that enable the efficient analysis of complex biomedical data and to promote the hypothesis generation in the context of translational research. The three chapters of the Dissertation relate to various segments of drug discovery and development process.

The first chapter introduces the integrated predictive drug discovery platform „SmartGraph”. The novel collaborative-filtering based algorithm „Target Based Recommender (TBR)” was developed in the framework of this …


Efficient Thermal Image Segmentation Through Integration Of Nonlinear Enhancement With Unsupervised Active Contour Model, Fatema Albalooshi, Evan Krieger, Paheding Sidike, Vijayan K. Asari Oct 2016

Efficient Thermal Image Segmentation Through Integration Of Nonlinear Enhancement With Unsupervised Active Contour Model, Fatema Albalooshi, Evan Krieger, Paheding Sidike, Vijayan K. Asari

Vijayan K. Asari

Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity …


An Algorithm For The Machine Calculation Of Minimal Paths, Robert Whitinger Aug 2016

An Algorithm For The Machine Calculation Of Minimal Paths, Robert Whitinger

Electronic Theses and Dissertations

Problems involving the minimization of functionals date back to antiquity. The mathematics of the calculus of variations has provided a framework for the analytical solution of a limited class of such problems. This paper describes a numerical approximation technique for obtaining machine solutions to minimal path problems. It is shown that this technique is applicable not only to the common case of finding geodesics on parameterized surfaces in R3, but also to the general case of finding minimal functionals on hypersurfaces in Rn associated with an arbitrary metric.


Optimizing The Mix Of Games And Their Locations On The Casino Floor, Jason D. Fiege, Anastasia D. Baran Jun 2016

Optimizing The Mix Of Games And Their Locations On The Casino Floor, Jason D. Fiege, Anastasia D. Baran

International Conference on Gambling & Risk Taking

We present a mathematical framework and computational approach that aims to optimize the mix and locations of slot machine types and denominations, plus other games to maximize the overall performance of the gaming floor. This problem belongs to a larger class of spatial resource optimization problems, concerned with optimizing the allocation and spatial distribution of finite resources, subject to various constraints. We introduce a powerful multi-objective evolutionary optimization and data-modelling platform, developed by the presenter since 2002, and show how this software can be used for casino floor optimization. We begin by extending a linear formulation of the casino floor …


Stationary And Time-Dependent Optimization Of The Casino Floor Slot Machine Mix, Anastasia D. Baran, Jason D. Fiege Jun 2016

Stationary And Time-Dependent Optimization Of The Casino Floor Slot Machine Mix, Anastasia D. Baran, Jason D. Fiege

International Conference on Gambling & Risk Taking

Modeling and optimizing the performance of a mix of slot machines on a gaming floor can be addressed at various levels of coarseness, and may or may not consider time-dependent trends. For example, a model might consider only time-averaged, aggregate data for all machines of a given type; time-dependent aggregate data; time-averaged data for individual machines; or fully time dependent data for individual machines. Fine-grained, time-dependent data for individual machines offers the most potential for detailed analysis and improvements to the casino floor performance, but also suffers the greatest amount of statistical noise. We present a theoretical analysis of single …


Variance Of Clusterings On Graphs, Thomas Vlado Mulc Apr 2016

Variance Of Clusterings On Graphs, Thomas Vlado Mulc

Mathematical Sciences Technical Reports (MSTR)

Graphs that represent data often have structures or characteristics that can represent some relationships in the data. One of these structures is clusters or community structures. Most clustering algorithms for graphs are deterministic, which means they will output the same clustering each time. We investigated a few stochastic algorithms, and look into the consistency of their clusterings.


Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang Feb 2016

Hpcnmf: A High-Performance Toolbox For Non-Negative Matrix Factorization, Karthik Devarajan, Guoli Wang

COBRA Preprint Series

Non-negative matrix factorization (NMF) is a widely used machine learning algorithm for dimension reduction of large-scale data. It has found successful applications in a variety of fields such as computational biology, neuroscience, natural language processing, information retrieval, image processing and speech recognition. In bioinformatics, for example, it has been used to extract patterns and profiles from genomic and text-mining data as well as in protein sequence and structure analysis. While the scientific performance of NMF is very promising in dealing with high dimensional data sets and complex data structures, its computational cost is high and sometimes could be critical for …


Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera Jan 2016

Signal Flow Graph Approach To Efficient Dst I-Iv Algorithms, Sirani M. Perera

Publications

In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n�1) points signal flow graph for DST-I and n points signal flow graphs for DST II-IV.


Simulation Of Nuclear Fusion Using A One Dimensional Particle In Cell Method, Steven T. Margell Jan 2016

Simulation Of Nuclear Fusion Using A One Dimensional Particle In Cell Method, Steven T. Margell

Cal Poly Humboldt theses and projects

In this thesis several novel techniques are developed to simulate fusion events in an isotropic, electrostatic three-dimensional Deuterium-Tritium plasma. These techniques allow us to accurately predict three-dimensional collision events with a one-dimensional model while simultaneously reducing compute time via a nearest neighbor algorithm. Furthermore, a fusion model based on first principles is developed that yields an average fusion reactivity which correlates well with empirical results.


Topographic Signatures Of Geodynamics, Samuel G. Roy Aug 2015

Topographic Signatures Of Geodynamics, Samuel G. Roy

Electronic Theses and Dissertations

The surface of the Earth retains an imperfect memory of the diverse geodynamic, climatic, and surface transport processes that cooperatively drive the evolution of Earth. In this thesis I explore the potential of using topographic analysis and landscape evolution models to unlock past and/or present evidence for geodynamic activity. I explore the potential isolated effects of geodynamics on landscape evolution, particularly focusing on two byproducts of tectonic strain: rock displacement and damage. Field evidence supports a strong correlation between rock damage and erodibility, and a numerical sensitivity analysis supports the hypothesis that an order of magnitude weakening in rock, well …


Accuracy Comparison Of Numerical Integration Algorithms For Real-Time Hybrid Simulations, Ganesh Anant Reddy Jul 2015

Accuracy Comparison Of Numerical Integration Algorithms For Real-Time Hybrid Simulations, Ganesh Anant Reddy

Civil & Environmental Engineering Theses & Dissertations

The use of accurate numerical integration algorithms is one of the key factors for a successful real-time hybrid simulation (RTHS). In RTHSs, explicit integration algorithms are preferred more than implicit methods since all calculations need to be completed within a given time step during simulation. Explicit methods require the use of effective stiffness and damping for experimental substructures, which are incorporated into the calculation of the integration parameters. In general, those values that are greater than the expected stiffness and damping of the experimental substructure are used to ensure the stability of simulation. If a rate-dependent and nonlinear experimental substructure …