Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Computation

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 245

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Inferring Dynamics Of Biological Systems, Tracey G. Oellerich May 2022

Inferring Dynamics Of Biological Systems, Tracey G. Oellerich

Biology and Medicine Through Mathematics Conference

No abstract provided.


Reduce Differential Transform Method For Analytical Approximation Of Fractional Delay Differential Equation, Tahir Naseem, Adnan Aurang Zeb, Muhammad Sohail May 2022

Reduce Differential Transform Method For Analytical Approximation Of Fractional Delay Differential Equation, Tahir Naseem, Adnan Aurang Zeb, Muhammad Sohail

International Journal of Emerging Multidisciplinaries: Mathematics

The study of an entirely new class of differential equations known as delay differential equations or difference differential equations has resulted from the development and application of automatic control systems (DDEs). Time delays are virtually always present in any system that uses feedback control. Because it takes a finite amount of time to sense information and then react to it, a time delay is required. This exploration was carried out for the solution of fractional delay differential equations by using the reduced differential transform method. The results are presented in a series of form that leads to an exact answer. …


Effects Of Thermal Radiation On Jeffery Hamel Flow For Stretchable Walls Of Newtonian Fluid: Analytical Investigation, Umar Khan, Adnan Abbasi, Naveed Ahmed, Basharat Ullah May 2022

Effects Of Thermal Radiation On Jeffery Hamel Flow For Stretchable Walls Of Newtonian Fluid: Analytical Investigation, Umar Khan, Adnan Abbasi, Naveed Ahmed, Basharat Ullah

International Journal of Emerging Multidisciplinaries: Mathematics

A viscous, incompressible fluid flows between two inclined planar walls. The walls are able to extend and decrease in size. By substituting an appropriate dimensionless variable, the dimensional partial differential equations of the flow model can be transformed into nondimensional ordinary differential equations. Solving nondimensional velocity and temperature in the model is made possible by the use of an analytical approach known as Adomian's decomposition (AD). Runge-Kutta techniques of order four are used to calculate numerical solutions to ensure the correctness of the analytical answer. On velocity and temperature, the impact of several dimensionless physical quantities embedded in the flow …


A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker May 2022

A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker

Theses and Dissertations

The direct and adjoint methods are to linearize the time-averaged solution of bounded dynamical systems about one or more design parameters. Hence, such methods are one way to obtain the gradient necessary in locally optimizing a dynamical system’s time-averaged behavior over those design parameters. However, when analyzing nonlinear systems whose solutions exhibit chaos, standard direct and adjoint sensitivity methods yield meaningless results due to time-local instability of the system. The present work proposes a new method of solving the direct and adjoint linear systems in time, then tests that method’s ability to solve instances of the Lorenz system that exhibit …


A Weak Fractional Calculus Theory And Numerical Methods For Fractional Differential Equations, Mitchell D. Sutton May 2022

A Weak Fractional Calculus Theory And Numerical Methods For Fractional Differential Equations, Mitchell D. Sutton

Doctoral Dissertations

This dissertation is comprised of four integral parts. The first part comprises a self-contained new theory of weak fractional differential calculus in one-dimension. The crux of this new theory is the introduction of a weak fractional derivative notion which is a natural generalization of integer order weak derivatives; it also helps to unify multiple existing fractional derivative definitions.

The second part of this work presents three new families of fractional Sobolev spaces and their accompanying theory in one-dimension. The new construction and theory are based on a newly developed notion of weak fractional derivatives, which are natural generalizations of the …


Approximate Solution Of Generalized Modified B-Equation By Optimal Auxiliary Function Method, Aatif Ali, Laiq Zada, Rashid Nawaz Jan 2022

Approximate Solution Of Generalized Modified B-Equation By Optimal Auxiliary Function Method, Aatif Ali, Laiq Zada, Rashid Nawaz

International Journal of Emerging Multidisciplinaries: Mathematics

In this study, the implantation of a new semi-analytical method called the optimal auxiliary function method (OAFM) has been extended to partial differential equations. The adopted method was tested upon for approximate solution of generalized modified b-equation. The first-order numerical solution obtained by OAFM has been compared with the variational homotopy perturbation method (VHPM). The method possesses the auxiliary function and control parameters which can be easily handled during simulation of the nonlinear problem. From the numerical and graphical results, we concluded the method is very effective and easy to implement for the nonlinear PDEs.


Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft Jan 2022

Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft

Theses and Dissertations

Odor perception is the impetus for important animal behaviors, most pertinently for feeding, but also for mating and communication. There are two predominate modes of odor processing: odors pass through the front of nose (ortho) while inhaling and sniffing, or through the rear (retro) during exhalation and while eating and drinking. Despite the importance of olfaction for an animal’s well-being and specifically that ortho and retro naturally occur, it is unknown whether the modality (ortho versus retro) is transmitted to cortical brain regions, which could significantly instruct how odors are processed. Prior imaging studies show different …


Stroke Clustering And Fitting In Vector Art, Khandokar Shakib Jan 2022

Stroke Clustering And Fitting In Vector Art, Khandokar Shakib

Senior Independent Study Theses

Vectorization of art involves turning free-hand drawings into vector graphics that can be further scaled and manipulated. In this paper, we explore the concept of vectorization of line drawings and study multiple approaches that attempt to achieve this in the most accurate way possible. We utilize a software called StrokeStrip to discuss the different mathematics behind the parameterization and fitting involved in the drawings.


Sensitivity Analysis Of Basins Of Attraction For Nelder-Mead, Sonia K. Shah Jan 2022

Sensitivity Analysis Of Basins Of Attraction For Nelder-Mead, Sonia K. Shah

Honors Projects

The Nelder-Mead optimization method is a numerical method used to find the minimum of an objective function in a multidimensional space. In this paper, we use this method to study functions - specifically functions with three-dimensional graphs - and create images of the basin of attraction of the function. Three different methods are used to create these images named the systematic point method, randomized centroid method, and systemized centroid method. This paper applies these methods to different functions. The first function has two minima with an equivalent function value. The second function has one global minimum and one local minimum. …


Numerical Study Of The Seiqr Model For Covid-19, Caitlin Holt Dec 2021

Numerical Study Of The Seiqr Model For Covid-19, Caitlin Holt

Student Research Submissions

In this research project, we used numerical methods to investigate trends in the susceptible, exposed, infectious, quarantined, recovered, closed cases and insusceptible populations for the COVID-19 pandemic in 2021. We used the SEIQR model containing seven ordinary differential equations, based on the SIR model for epidemics. An analytical solution was derived from a simplified version of the model, created by making various assumptions about the original model. Numerical solutions were generated for the first 100 days of 2021 using algorithms based on Euler's Method, Runge-Kutta Method, and Multistep Methods. Our goal is to show that numerical methods can help us …


Modeling, Analysis And Simulation Of Covid-19 Interaction Dynamics Between Local Community In Saudi Arabia And Visiting Sub-Population, Manal Badgaish, Padmanabhan Seshaiyer Nov 2021

Modeling, Analysis And Simulation Of Covid-19 Interaction Dynamics Between Local Community In Saudi Arabia And Visiting Sub-Population, Manal Badgaish, Padmanabhan Seshaiyer

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


The Impact Of Fungicide Treatment On The Dynamics Of Cocoa Black Pod Disease, Bismark Oduro Nov 2021

The Impact Of Fungicide Treatment On The Dynamics Of Cocoa Black Pod Disease, Bismark Oduro

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Mathematical Model For Understanding The Spread Of Covid-19 In Saudi Arabia With Access To Vaccination, Maha Alshabrawi Nov 2021

Mathematical Model For Understanding The Spread Of Covid-19 In Saudi Arabia With Access To Vaccination, Maha Alshabrawi

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Mathematical Modeling Of Breast Cancer Cell Mcf-7 Growths Due To Curcumin Treatments, Widodo Samyono, Hildana Assefa, Kana Kassa Nov 2021

Mathematical Modeling Of Breast Cancer Cell Mcf-7 Growths Due To Curcumin Treatments, Widodo Samyono, Hildana Assefa, Kana Kassa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Mathematical Modeling, Analysis, And Simulation Of The Covid-19 Pandemic With Behavioral Patterns And Group Mixing, Comfort Ohajunwa, Padmanabhan Seshaiyer Jul 2021

Mathematical Modeling, Analysis, And Simulation Of The Covid-19 Pandemic With Behavioral Patterns And Group Mixing, Comfort Ohajunwa, Padmanabhan Seshaiyer

Spora: A Journal of Biomathematics

Due to the rise of COVID-19 cases, many mathematical models have been developed to study the disease dynamics of the virus. However, despite its role in the spread of COVID-19, many SEIR models neglect to account for human behavior. In this project, we develop a novel mathematical modeling framework for studying the impact of mixing patterns and social behavior on the spread of COVID-19. Specifically, we consider two groups, one exhibiting normal behavior who do not reduce their contacts and another exhibiting altered behavior who reduce their contacts by practicing non-pharmaceutical interventions such as social distancing and self-isolation. The dynamics …


Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng Jul 2021

Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng

Theses and Dissertations

Recent numerical work of Carlson-Hudson-Larios leverages a nudging-based algorithm for data assimilation to asymptotically recover viscosity in the 2D Navier-Stokes equations as partial observations on the velocity are received continuously-in-time. This "on-the-fly" algorithm is studied both analytically and numerically for the Lorenz equations in this thesis.


An Examination Of Fontan Circulation Using Differential Equation Models And Numerical Methods, Vanessa Maybruck May 2021

An Examination Of Fontan Circulation Using Differential Equation Models And Numerical Methods, Vanessa Maybruck

Honors Student Research

Certain congenital heart defects can lead to the development of only a single pumping chamber, or ventricle, in the heart instead of the usual two ventricles. Individuals with this defect undergo a corrective, three-part surgery, the third step of which is the Fontan procedure, but as the patients age, their cardiovascular health will likely deteriorate. Using computational fluid dynamics and differential equations, Fontan circulation can be modeled to investigate why the procedure fails and how Fontan failure can be maximally prevented. Borrowing from well-established literature on RC circuits, the differential equation models simulate systemic blood flow in a piecewise, switch-like …


Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov May 2021

Computational Design Of Nonlinear Stress-Strain Of Isotropic Materials, Askhad M.Polatov, Akhmat M. Ikramov, Daniyarbek Razmukhamedov

Chemical Technology, Control and Management

The article deals with the problems of numerical modeling of nonlinear physical processes of the stress-strain state of structural elements. An elastoplastic medium of a homogeneous solid material is investigated. The results of computational experiments on the study of the process of physically nonlinear deformation of isotropic elements of three-dimensional structures with a system of one- and double-periodic spherical cavities under uniaxial compression are presented. The influence and mutual influence of stress concentrators in the form of spherical cavities, vertically located two cavities and a horizontally located system of two cavities on the deformation of the structure are investigated. Numerical …


High-Order Flexible Multirate Integrators For Multiphysics Applications, Rujeko Chinomona May 2021

High-Order Flexible Multirate Integrators For Multiphysics Applications, Rujeko Chinomona

Mathematics Theses and Dissertations

Traditionally, time integration methods within multiphysics simulations have been chosen to cater to the most restrictive dynamics, sometimes at a great computational cost. Multirate integrators accurately and efficiently solve systems of ordinary differential equations that exhibit different time scales using two or more time steps. In this thesis, we explore three classes of time integrators that can be classified as one-step multi-stage multirate methods for which the slow dynamics are evolved using a traditional one step scheme and the fast dynamics are solved through a sequence of modified initial value problems. Practically, the fast dynamics are subcycled using a small …


Lexicographic Sensitivity Functions For Nonsmooth Models In Mathematical Biology, Matthew D. Ackley May 2021

Lexicographic Sensitivity Functions For Nonsmooth Models In Mathematical Biology, Matthew D. Ackley

Electronic Theses and Dissertations

Systems of ordinary differential equations (ODEs) may be used to model a wide variety of real-world phenomena in biology and engineering. Classical sensitivity theory is well-established and concerns itself with quantifying the responsiveness of such models to changes in parameter values. By performing a sensitivity analysis, a variety of insights can be gained into a model (and hence, the real-world system that it represents); in particular, the information gained can uncover a system's most important aspects, for use in design, control or optimization of the system. However, while the results of such analysis are desirable, the approach that classical theory …


Lecture 14: Randomized Algorithms For Least Squares Problems, Ilse C.F. Ipsen Apr 2021

Lecture 14: Randomized Algorithms For Least Squares Problems, Ilse C.F. Ipsen

Mathematical Sciences Spring Lecture Series

The emergence of massive data sets, over the past twenty or so years, has lead to the development of Randomized Numerical Linear Algebra. Randomized matrix algorithms perform random sketching and sampling of rows or columns, in order to reduce the problem dimension or compute low-rank approximations. We review randomized algorithms for the solution of least squares/regression problems, based on row sketching from the left, or column sketching from the right. These algorithms tend to be efficient and accurate on matrices that have many more rows than columns. We present probabilistic bounds for the amount of sampling required to achieve a …


Lecture 13: A Low-Rank Factorization Framework For Building Scalable Algebraic Solvers And Preconditioners, X. Sherry Li Apr 2021

Lecture 13: A Low-Rank Factorization Framework For Building Scalable Algebraic Solvers And Preconditioners, X. Sherry Li

Mathematical Sciences Spring Lecture Series

Factorization based preconditioning algorithms, most notably incomplete LU (ILU) factorization, have been shown to be robust and applicable to wide ranges of problems. However, traditional ILU algorithms are not amenable to scalable implementation. In recent years, we have seen a lot of investigations using low-rank compression techniques to build approximate factorizations.
A key to achieving lower complexity is the use of hierarchical matrix algebra, stemming from the H-matrix research. In addition, the multilevel algorithm paradigm provides a good vehicle for a scalable implementation. The goal of this lecture is to give an overview of the various hierarchical matrix formats, such …


Lecture 07: Nonlinear Preconditioning Methods And Applications, Xiao-Chuan Cai Apr 2021

Lecture 07: Nonlinear Preconditioning Methods And Applications, Xiao-Chuan Cai

Mathematical Sciences Spring Lecture Series

We consider solving system of nonlinear algebraic equations arising from the discretization of partial differential equations. Inexact Newton is a popular technique for such problems. When the nonlinearities in the system are well-balanced, Newton's method works well, but when a small number of nonlinear functions in the system are much more nonlinear than the others, Newton may converge slowly or even stagnate. In such a situation, we introduce some nonlinear preconditioners to balance the nonlinearities in the system. The preconditioners are often constructed using a combination of some domain decomposition methods and nonlinear elimination methods. For the nonlinearly preconditioned problem, …


Lecture 02: Tile Low-Rank Methods And Applications (W/Review), David Keyes Apr 2021

Lecture 02: Tile Low-Rank Methods And Applications (W/Review), David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Lecture 11: The Road To Exascale And Legacy Software For Dense Linear Algebra, Jack Dongarra Apr 2021

Lecture 11: The Road To Exascale And Legacy Software For Dense Linear Algebra, Jack Dongarra

Mathematical Sciences Spring Lecture Series

In this talk, we will look at the current state of high performance computing and look at the next stage of extreme computing. With extreme computing, there will be fundamental changes in the character of floating point arithmetic and data movement. In this talk, we will look at how extreme-scale computing has caused algorithm and software developers to change their way of thinking on implementing and program-specific applications.


Lecture 01: Scalable Solvers: Universals And Innovations, David Keyes Apr 2021

Lecture 01: Scalable Solvers: Universals And Innovations, David Keyes

Mathematical Sciences Spring Lecture Series

As simulation and analytics enter the exascale era, numerical algorithms, particularly implicit solvers that couple vast numbers of degrees of freedom, must span a widening gap between ambitious applications and austere architectures to support them. We present fifteen universals for researchers in scalable solvers: imperatives from computer architecture that scalable solvers must respect, strategies towards achieving them that are currently well established, and additional strategies currently being developed for an effective and efficient exascale software ecosystem. We consider recent generalizations of what it means to “solve” a computational problem, which suggest that we have often been “oversolving” them at the …


Modelling The Transition From Homogeneous To Columnar States In Locust Hopper Bands, Miguel Velez Jan 2021

Modelling The Transition From Homogeneous To Columnar States In Locust Hopper Bands, Miguel Velez

HMC Senior Theses

Many biological systems form structured swarms, for instance in locusts, whose swarms are known as hopper bands. There is growing interest in applying mathematical models to understand the emergence and dynamics of these biological and social systems. We model the locusts of a hopper band as point particles interacting through repulsive and attractive social "forces" on a one dimensional periodic domain. The primary goal of this work is to modify this well studied modelling framework to be more biological by restricting repulsion to act locally between near neighbors, while attraction acts globally between all individuals. This is a biologically motivated …


Buckling Loads Of A Graphene Layer Interacting With Rigid Substrates, Bradley Beckwith Jan 2021

Buckling Loads Of A Graphene Layer Interacting With Rigid Substrates, Bradley Beckwith

Williams Honors College, Honors Research Projects

The goal of this project is to formulate a model that can predict the buckling of a graphene layer between two rigid substrates. The model will predict the buckling of the graphene layer when it is parallel to the substrates and an edge load is applied to the ends of the layer. Our main focus is to use the model to predict buckling loads given different assumptions for interaction forces between the graphene layer and the substrates. For this project continuum modeling will be used to create a model for the graphene buckling problem. This modeling leads to a total …


Sum Of Cubes Of The First N Integers, Obiamaka L. Agu Dec 2020

Sum Of Cubes Of The First N Integers, Obiamaka L. Agu

Electronic Theses, Projects, and Dissertations

In Calculus we learned that 􏰅Sum^{n}_{k=1} k = [n(n+1)]/2 , that Sum^{􏰅n}_{k=1} k^2 = [n(n+1)(2n+1)]/6 , and that Sum^{n}_{k=1} k^{3} = (n(n+1)/2)^{2}. These formulas are useful when solving for the area below quadratic or cubic function over an interval [a, b]. This tedious process, solving for areas under a quadratic or a cubic, served as motivation for the introduction of Riemman integrals. For the overzealous math student, these steps were replaced by a simpler method of evaluating antiderivatives at the endpoints a and b. From my recollection, a former instructor informed us to do the value of memorizing these formulas. …


Asymptotic Analysis Of Radial Point Rupture Solutions For Elliptic Equations, Attou Miloua Nov 2020

Asymptotic Analysis Of Radial Point Rupture Solutions For Elliptic Equations, Attou Miloua

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.