Open Access. Powered by Scholars. Published by Universities.®

Ordinary Differential Equations and Applied Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

427 Full-Text Articles 422 Authors 168396 Downloads 55 Institutions

All Articles in Ordinary Differential Equations and Applied Dynamics

Faceted Search

427 full-text articles. Page 1 of 17.

Modeling Mayfly Nymph Length Distribution And Population Dynamics Across A Gradient Of Stream Temperatures And Stream Types, Jeremy Anthony, Jennifer Baccam, Imanuel Bier, Emily Gregg, Leif Halverson, Ryan Mulcahy, Emmanuel Okanla, Samira A. Osman, Adam R. Pancoast, Kevin C. Schultz, Alex Sushko, Jennifer Vorarath, Yia Vue, Austin Wagner, Emily Gaenzle Schilling, John M. Zobitz 2018 Augsburg College

Modeling Mayfly Nymph Length Distribution And Population Dynamics Across A Gradient Of Stream Temperatures And Stream Types, Jeremy Anthony, Jennifer Baccam, Imanuel Bier, Emily Gregg, Leif Halverson, Ryan Mulcahy, Emmanuel Okanla, Samira A. Osman, Adam R. Pancoast, Kevin C. Schultz, Alex Sushko, Jennifer Vorarath, Yia Vue, Austin Wagner, Emily Gaenzle Schilling, John M. Zobitz

Spora: A Journal of Biomathematics

We analyze a process-based temperature model for the length distribution and population over time of mayfly nymphs. Model parameters are estimated using a Markov Chain Monte Carlo parameter estimation method utilizing length distribution data at five different stream sites. Two different models (a standard exponential model and a modified Weibull model) of mayfly mortality are evaluated, where in both cases mayfly length growth is a function of stream temperature. Based on model-data comparisons to the modeled length distribution and the Bayesian Information Criterion, we found that approaches that length distribution data can reliably estimate 2–3 model parameters. Future model ...


Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar 2018 Nanjing University of Science and Technology

Strong Stability Of A Class Of Difference Equations Of Continuous Time And Structured Singular Value Problem, Qian Ma, Keqin Gu, Narges Choubedar

SIUE Faculty Research, Scholarship, and Creative Activity

This article studies the strong stability of scalar difference equations of continuous time in which the delays are sums of a number of independent parameters tau_i, i = 1, 2, . . . ,K. The characteristic quasipolynomial of such an equation is a multilinear function of exp(-tau_i s). It is known that the characteristic quasipolynomial of any difference equation set in the form of one-delayper- scalar-channel (ODPSC) model is also in such a multilinear form. However, it is shown in this article that some multilinear forms of quasipolynomials are not characteristic quasipolynomials of any ODPSC difference equation set. The equivalence between local strong ...


Modeling Mayfly Nymph Length Distribution And Population Dynamics Across A Gradient Of Stream Temperatures And Stream Types, Jeremy Anthony, Jennifer Baccam, Imanuel Bier, Emily Gregg, Leif Halverson, Ryan Mulcahy, Emmanuel Okanla, Samira A. Osman, Adam R. Pancoast, Kevin C. Schultz, Alex Sushko, Jennifer Vorarath, Yia Vue, Austin Wagner, Emily Gaenzle Schilling, John Zobitz 2018 Augsburg University

Modeling Mayfly Nymph Length Distribution And Population Dynamics Across A Gradient Of Stream Temperatures And Stream Types, Jeremy Anthony, Jennifer Baccam, Imanuel Bier, Emily Gregg, Leif Halverson, Ryan Mulcahy, Emmanuel Okanla, Samira A. Osman, Adam R. Pancoast, Kevin C. Schultz, Alex Sushko, Jennifer Vorarath, Yia Vue, Austin Wagner, Emily Gaenzle Schilling, John Zobitz

Faculty Authored Articles

We analyze a process-based temperature model for the length distribution and population over time of mayfly nymphs. Model parameters are estimated using a Markov Chain Monte Carlo parameter estimation method utilizing length distribution data at five different stream sites. Two different models (a standard exponential model and a modified Weibull model) of mayfly mortality are evaluated, where in both cases mayfly length growth is a function of stream temperature. Based on model-data comparisons to the modeled length distribution and the Bayesian Information Criterion, we found that approaches that length distribution data can reliably estimate 2–3 model parameters. Future model ...


Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski 2017 Wojciech Budzianowski Consulting Services

Call For Abstracts - Resrb 2018, June 18-20, Brussels, Belgium, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Registration Form Resrb 2018, Wojciech M. Budzianowski 2017 Wojciech Budzianowski Consulting Services

Registration Form Resrb 2018, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Abstract Template Resrb 2018, Wojciech M. Budzianowski 2017 Wojciech Budzianowski Consulting Services

Abstract Template Resrb 2018, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


On The Existence Of Bogdanov-Takens Bifurcations, Zachary Deskin 2017 Missouri State University

On The Existence Of Bogdanov-Takens Bifurcations, Zachary Deskin

MSU Graduate Theses

In bifurcation theory, there is a theorem (called Sotomayor's Theorem) which proves the existence of one of three possible bifurcations of a given system, provided that certain conditions of the system are satisfied. It turns out that there is a "similar" theorem for proving the existence of what is referred to as a Bogdanov-Takens bifurcation. The author is only aware of one reference that has the proof of this theorem. However, most of the details were left out of the proof. The contribution of this thesis is to provide the details of the proof on the existence of Bogdanov-Takens ...


Stochastic Analysis Of A Mammalian Circadian Clock Model: Small Protein Number Effects, David W. Morgens, Blerta Shtylla 2017 Stanford University

Stochastic Analysis Of A Mammalian Circadian Clock Model: Small Protein Number Effects, David W. Morgens, Blerta Shtylla

Spora: A Journal of Biomathematics

The circadian clock, responsible for coordinating organism function with daily and seasonal changes in the day-night cycle, is controlled by a complex protein network that constitutes a robust biochemical oscillator. Deterministic ordinary differential equation models have been used extensively to model the behavior of these central clocks. However, due to the small number of proteins involved in the circadian oscillations, mathematical models that track stochastic variations in the numbers of clock proteins may reveal more complex and biologically relevant behaviors. In this paper, we compare the response of a robust yet detailed deterministic model for the mammalian circadian clock with ...


Age-Structured And Vaccination Models Of Devil Facial Tumor Disease, Christopher D. Bruno, Timothy Comar, Megan O. Powell, Adjo Tameklo 2017 University of St. Francis

Age-Structured And Vaccination Models Of Devil Facial Tumor Disease, Christopher D. Bruno, Timothy Comar, Megan O. Powell, Adjo Tameklo

Spora: A Journal of Biomathematics

Tasmanian devil populations have been devastated by devil facial tumor disease (DFTD) since its first appearance in 1996. The average lifespan of a devil has decreased from six years to three years. We present an age-structured model to represent how the disease has affected the age and breeding structures of the population. We show that with the recent increase in the breeding of juvenile devils, the overall devil population will increase but not nearly to pre-DFTD levels. The basic reproductive number may be increased with the influx of young breeding devils. In addition, our model shows that the release of ...


Electromagnetic Resonant Scattering In Layered Media With Fabrication Errors, Emily Anne McHenry 2017 Louisiana State University and Agricultural and Mechanical College

Electromagnetic Resonant Scattering In Layered Media With Fabrication Errors, Emily Anne Mchenry

LSU Doctoral Dissertations

In certain layered electromagnetic media, one can construct a waveguide that supports a harmonic electromagnetic field at a frequency that is embedded in the continuous spectrum. When the structure is perturbed, this embedded eigenvalue moves into the complex plane and becomes a “complex resonance” frequency. The real and imaginary parts of this complex frequency have physical meaning. They lie behind anomalous scattering behaviors known collectively as “Fano resonance”, and people are interested in tuning them to specific values in optical devices. The mathematics involves spectral theory and analytic perturbation theory and is well understood [16], at least on a theoretical ...


Mathematical Modeling Of Tumor Immune Interactions: A Closer Look At The Role Of A Pd-L1 Inhibitor In Cancer Immunotherapy, Timothy Woods II 2017 Pomona College

Mathematical Modeling Of Tumor Immune Interactions: A Closer Look At The Role Of A Pd-L1 Inhibitor In Cancer Immunotherapy, Timothy Woods Ii

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


The Dynamics Of An Epidemiological Model For Human Papillomavirus With Partial Vaccination In A Heterogeneous Population, Stefano Chiaradonna 2017 Illinois State University

The Dynamics Of An Epidemiological Model For Human Papillomavirus With Partial Vaccination In A Heterogeneous Population, Stefano Chiaradonna

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Dftd Age Structure And Vaccination Modeling, Christopher D. Bruno 2017 University of St. Francis

Dftd Age Structure And Vaccination Modeling, Christopher D. Bruno

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Modeling The Growth Of Psedomonas Putida By Gompertz Dynamic Equations, Elvan Akin 2017 Missouri University of Science and Technology

Modeling The Growth Of Psedomonas Putida By Gompertz Dynamic Equations, Elvan Akin

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


When Is Closing A School Effective For Stopping Disease Spread?, Anthony DeLegge 2017 Benedictine University

When Is Closing A School Effective For Stopping Disease Spread?, Anthony Delegge

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Optimal Control And Models For Alternative Pest Management To Alfalfa Agroecosystems, Mohammed Yahdi 2017 Hartnell College

Optimal Control And Models For Alternative Pest Management To Alfalfa Agroecosystems, Mohammed Yahdi

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


The Kinetics Of Type I Interferons During Influenza A Virus Infection, Margaret A. Myers 2017 St. Jude Children's Research Hospital

The Kinetics Of Type I Interferons During Influenza A Virus Infection, Margaret A. Myers

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Modeling Cdc42 Oscillation In Fission Yeast, Bin Xu 2017 Illinois State University

Modeling Cdc42 Oscillation In Fission Yeast, Bin Xu

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


One Tick, Two Tick, Two Pathogens, Oh No! Am I Sick?, Caleb L. Adams 2017 Radford University

One Tick, Two Tick, Two Pathogens, Oh No! Am I Sick?, Caleb L. Adams

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


A Model Of Dengue Transmission With Wolbachia-Free And Wolbachia-Infected Mosquitoes, Iftikhar Ahmed 2017 Illinois State University

A Model Of Dengue Transmission With Wolbachia-Free And Wolbachia-Infected Mosquitoes, Iftikhar Ahmed

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Digital Commons powered by bepress