Open Access. Powered by Scholars. Published by Universities.®

Ordinary Differential Equations and Applied Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

877 Full-Text Articles 1,241 Authors 465,663 Downloads 95 Institutions

All Articles in Ordinary Differential Equations and Applied Dynamics

Faceted Search

877 full-text articles. Page 1 of 39.

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley 2024 The Texas Medical Center Library

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley

Dissertations & Theses (Open Access)

The Monte Carlo particle simulator TOPAS, the multiphysics solver COMSOL., and

several analytical radiation transport methods were employed to perform an in-depth proof-ofconcept

for a high dose rate, high precision converging beam small animal irradiation platform.

In the first aim of this work, a novel carbon nanotube-based compact X-ray tube optimized for

high output and high directionality was designed and characterized. In the second aim, an

optimization algorithm was developed to customize a collimator geometry for this unique Xray

source to simultaneously maximize the irradiator’s intensity and precision. Then, a full

converging beam irradiator apparatus was fit with a multitude …


Modeling An Infection Outbreak With Quarantine: The Sibkr Model, Mikenna Dew, Amanda Langosch, Theadora Baker-Wallerstein 2024 The Ohio State University

Modeling An Infection Outbreak With Quarantine: The Sibkr Model, Mikenna Dew, Amanda Langosch, Theadora Baker-Wallerstein

Rose-Hulman Undergraduate Mathematics Journal

Influenza is a respiratory infection that places a substantial burden in the world population each year. In this project, we study and interpret a data set from a flu outbreak in a British boarding school in 1978 with mathematical modeling. First, we propose a generalization of the SIR model based on the quarantine measure in place and establish the long-time behavior of the model. By analyzing the model mathematically, we determine the analytic formulas of the basic reproduction number, the long-time limit of solutions, and the maximum number of infection population. Moreover, we estimate the parameters of the model based …


Existence And Uniqueness Of Solutions Of Sobolev Type Second Order Integrodifferential Equation, Kamalendra Kumar, Manish Nath Tripathi 2024 SRMS College of Engineering & Technology

Existence And Uniqueness Of Solutions Of Sobolev Type Second Order Integrodifferential Equation, Kamalendra Kumar, Manish Nath Tripathi

Applications and Applied Mathematics: An International Journal (AAM)

The primary concern of this article is to establish the existence, uniqueness and continuous dependence on initial data of mild solutions of second order mixed integrodifferential equations of Sobolev type in Banach spaces. For this objective, we employ the idea of strongly continuous cosine family of operators, the modified version of Banach theorem and Grownwall’s inequality. The model is demonstrated to elucidate the abstract conclusion.


Stability Of Predator-Prey Model For Worm Attack In Wireless Sensor Networks, Rajeev Kishore, Padam Singh 2024 Galgotias College of Engineering and Technology

Stability Of Predator-Prey Model For Worm Attack In Wireless Sensor Networks, Rajeev Kishore, Padam Singh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we propose a predator-prey mathematical model for analyzing the dynamical behaviors of the system. This system is an epidemic model, and it is capable of ascertaining the worm's spreading at the initial stage and improving the security of wireless sensor networks. We investigate different fixed points and examine the stability of the projected model.


Infusing Quantitative Reasoning Skills Into A Differential Equation Class In An Urban Public Community College, Tanvir Prince 2024 CUNY Hostos Community College

Infusing Quantitative Reasoning Skills Into A Differential Equation Class In An Urban Public Community College, Tanvir Prince

Numeracy

This research centers on implementing Quantitative Reasoning (QR) within a differential equations course at an urban public community college. As a participant in the Numeracy Infusion for College Educators (NICE) faculty development program, I sought to integrate QR skills into my curriculum. Students in the course were introduced to QR goals using real-world data sets, particularly those related to population growth, which aim to enhance their understanding, sharpen their problem-solving abilities, and cultivate a positive perspective on the real-world relevance of mathematics. Preliminary findings indicate varied levels of QR skill development among students. These results underscore the potential benefits of …


A Tale Of Two Viruses: Why Smallpox Was Eradicated And Polio Persists, Katherine G. McGough, Erin N. Bodine 2024 Rhodes College

A Tale Of Two Viruses: Why Smallpox Was Eradicated And Polio Persists, Katherine G. Mcgough, Erin N. Bodine

Spora: A Journal of Biomathematics

The smallpox and poliomyelitis (polio) viruses were, at a time, one of the largest threats to global public health killing millions until global eradication campaigns were put into effect. Vaccination led to the eradication of smallpox and the elimination of polio for most of the world. However, polio continues to persist at endemic levels in Pakistan and Afghanistan. We developed ODE models of smallpox and polio to explore differences in transmission dynamics and determine if the underlying biology has made poliomyelitis more difficult to eradicate. Our model analysis shows there are multiple factors which should allow polio to have a …


A Coupled Model Of Population, Poaching, And Economic Dynamics To Assess Rhino Conservation Through Legal Trade, Henry Doyle, Kylie Champagne, Ditto Rajpal, Grace Seebeck, David J. Gerberry 2024 Xavier University

A Coupled Model Of Population, Poaching, And Economic Dynamics To Assess Rhino Conservation Through Legal Trade, Henry Doyle, Kylie Champagne, Ditto Rajpal, Grace Seebeck, David J. Gerberry

Spora: A Journal of Biomathematics

Rhinoceros populations in Africa are in peril largely due to the high value of their horns and the poaching that ensues. The strategy of legalizing the international trade of rhino horn is receiving increased support among both the people and government officials in Africa. Many in the international conservation community remain opposed to the idea. The legalization strategy is straightforward in theory: legalizing the trade of rhino horn will introduce a large quantity of horn to the market, the increased supply will lead to lower prices for rhino horn, and lower prices will reduce the overall poaching pressure these animals …


Odes And Mandatory Voting, Christoph Borgers, Natasa Dragovic, Anna Haensch, Arkadz Kirshtein, Lilla Orr 2024 Tufts University, Medford, MA

Odes And Mandatory Voting, Christoph Borgers, Natasa Dragovic, Anna Haensch, Arkadz Kirshtein, Lilla Orr

CODEE Journal

This paper presents mathematics relevant to the question whether voting should be mandatory. Assuming a static distribution of voters’ political beliefs, we model how politicians might adjust their positions to raise their share of the vote. Various scenarios can be explored using our app at https: //centrism.streamlit.app/. Abstentions are found to have great impact on the dynamics of candidates, and in particular to introduce the possibility of discontinuous jumps in optimal candidate positions. This is an unusual application of ODEs. We hope that it might help engage some students who may find it harder to connect with the more customary …


Fitting A Covid-19 Model Incorporating Senses Of Safety And Caution To Local Data From Spartanburg County, South Carolina, D. Chloe Griffin, Amanda Mangum 2024 Brown University

Fitting A Covid-19 Model Incorporating Senses Of Safety And Caution To Local Data From Spartanburg County, South Carolina, D. Chloe Griffin, Amanda Mangum

CODEE Journal

Common mechanistic models include Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed (SEIR) models. These models in their basic forms have generally failed to capture the nature of the COVID-19 pandemic's multiple waves and do not take into account public policies such as social distancing, mask mandates, and the ``Stay-at-Home'' orders implemented in early 2020. While the Susceptible-Vaccinated-Infected-Recovered-Deceased (SVIRD) model only adds two more compartments to the SIR model, the inclusion of time-dependent parameters allows for the model to better capture the first two waves of the COVID-19 pandemic when surveillance testing was common practice for a large portion of the population. We find …


Modeling Aircraft Takeoffs, Catherine Cavagnaro 2024 Sewanee University

Modeling Aircraft Takeoffs, Catherine Cavagnaro

CODEE Journal

Real-world applications can demonstrate how mathematical models describe and provide insight into familiar physical systems. In this paper, we apply techniques from a first-semester differential equations course that shed light on a problem from aviation. In particular, we construct several differential equations that model the distance that an aircraft requires to become airborne. A popular thumb rule that pilots have used for decades appears to emanate from one of these models. We will see that this rule does not follow from a representative model and suggest a better method of ensuring safety during takeoff. Aircraft safety is definitely a matter …


Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen 2024 Wilfrid Laurier University

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …


A Novel Scheme Based On Bessel Operational Matrices For Solving A Class Of Nonlinear Systems Of Differential Equations, Atallah El-Shenawy, Mohamed El-Gamel, Muhammad E. Anany 2024 Department of mathematics and engineering physics, faculty of engineering, Mansoura University, Mansoura, Egypt

A Novel Scheme Based On Bessel Operational Matrices For Solving A Class Of Nonlinear Systems Of Differential Equations, Atallah El-Shenawy, Mohamed El-Gamel, Muhammad E. Anany

Mansoura Engineering Journal

The system of ordinary differential equations arises in many natural phenomena, especially in the field of disease spread. In this paper, a perfect spectral technique is introduced to solve systems of nonlinear differential equations. The technique enhanced the Bessel collocation technique by converting the series notation of unknown variables and their derivatives to matrix relations. The Newton algorithm is developed to solve the resulting nonlinear system of algebraic equations. The effectiveness of the scheme is proved by the convergence analysis and error bound as demonstrated in Theorem 1. The scheme of solution is tested to clarify the efficiency and the …


Analyzing A Smartphone Battle Using Bass Competition Model, Maila Hallare, Alireza Hosseinkhan, Hasala Senpathy K. Gallolu Kankanamalage 2023 United States Air Force Academy

Analyzing A Smartphone Battle Using Bass Competition Model, Maila Hallare, Alireza Hosseinkhan, Hasala Senpathy K. Gallolu Kankanamalage

CODEE Journal

Many examples of 2x2 nonlinear systems in a first-course in ODE or a mathematical modeling class come from physics or biology. We present an example that comes from the business or management sciences, namely, the Bass diffusion model. We believe that students will appreciate this model because it does not require a lot of background material and it is used to analyze sales data and serve as a guide in pricing decisions for a single product. In this project, we create a 2x2 ODE system that is inspired by the Bass diffusion model; we call the resulting system the Bass …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia 2023 Brigham Young University

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Nonsmooth Epidemic Models With Evolutionary Game Theory, Cameron Morin 2023 University of Maine

Nonsmooth Epidemic Models With Evolutionary Game Theory, Cameron Morin

Electronic Theses and Dissertations

This thesis explores the utilization of game theory and nonsmooth functions to enhance the accuracy of epidemiological simulations. Traditional sensitivity analysis encounters difficulties when dealing with nondifferentiable points in nonsmooth functions. However, by incorporating recent advancements in nonsmooth analysis, sensitivity analysis techniques have been adapted to accommodate these complex functions. In pursuit of more accurate simulations, evolutionary game theory, primarily the replicator equation, is introduced, modeling individuals’ decision making processes when observing others’ choices. The SEIR model is explored in depth, and additional complexities are incorporated, leading to the creation of an expanded SEIR model, the Be-SEIMR model.


Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng 2023 Western University

Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng

Electronic Thesis and Dissertation Repository

This thesis investigates a series of nonlinear predator-prey systems incorporating the Allee effect using differential equations. The main goal is to determine how the Allee effect affects population dynamics. The stability and bifurcations of the systems are studied with a hierarchical parametric analysis, providing insights into the behavioral changes of the population within the systems. In particular, we focus on the study of the number and distribution of limit cycles (oscillating solutions) and the existence of multiple stable states, which cause complex dynamical behaviors. Moreover, including the prey refuge, we examine how our method benefits the low-density animals and affects …


(R2056) Convergence Criteria For Solutions Of A System Of Second Order Nonlinear Differential Equations, Akinwale Olutimo 2023 Lagos State University

(R2056) Convergence Criteria For Solutions Of A System Of Second Order Nonlinear Differential Equations, Akinwale Olutimo

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we investigate the convergence of solutions of certain nonlinear system of two differential equations using a suitable Lyapunov functional with sufficient conditions to establish our new result. An example is given to demonstrate the effectiveness of the result obtained and geometric argument to show that the solutions of the system are better rapidly converging under the criteria obtained.


Game-Theoretic Approaches To Optimal Resource Allocation And Defense Strategies In Herbaceous Plants, Molly R. Creagar 2023 University of Nebraska-Lincoln

Game-Theoretic Approaches To Optimal Resource Allocation And Defense Strategies In Herbaceous Plants, Molly R. Creagar

Department of Mathematics: Dissertations, Theses, and Student Research

Empirical evidence suggests that the attractiveness of a plant to herbivores can be affected by the investment in defense by neighboring plants, as well as investment in defense by the focal plant. Thus, allocation to defense may not only be influenced by the frequency and intensity of herbivory but also by defense strategies employed by other plants in the environment. We incorporate a neighborhood defense effect by applying spatial evolutionary game theory to optimal resource allocation in plants where cooperators are plants investing in defense and defectors are plants that do not. We use a stochastic dynamic programming model, along …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt 2023 Clemson University

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Long-Acting Cabotegravir And The Emergence Of Drug-Resistant Hiv, Katharine Gurski 2023 Howard University

Long-Acting Cabotegravir And The Emergence Of Drug-Resistant Hiv, Katharine Gurski

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Digital Commons powered by bepress