Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Mathematical Analysis Of Eukaryotic Pericentromere, Puranjan Ghimire Jan 2024

Mathematical Analysis Of Eukaryotic Pericentromere, Puranjan Ghimire

Theses and Dissertations

The centromere is crucial for chromosomal stability and their proper segregation during cell division in eukaryotes. Surrounding the centromere are pericentromeres, made of repetitive DNA elements called pericentromeric repeats, varying from 10 in fission yeast to thousands in humans. These repeats form densely packed heterochromatin, where genes are usually silenced. The silencing mechanism across different pericentromeric repeats remains unclear.

Despite variations in sequence and length, pericentromeric repeats are conserved across eukaryotes, indicating their functional importance. This dissertation presents mathematical models to quantify gene silencing in fission yeast and humans. In fission yeast, my model predicts that silencing occurs only with …


A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker May 2022

A Novel Method For Sensitivity Analysis Of Time-Averaged Chaotic System Solutions, Christian A. Spencer-Coker

Theses and Dissertations

The direct and adjoint methods are to linearize the time-averaged solution of bounded dynamical systems about one or more design parameters. Hence, such methods are one way to obtain the gradient necessary in locally optimizing a dynamical system’s time-averaged behavior over those design parameters. However, when analyzing nonlinear systems whose solutions exhibit chaos, standard direct and adjoint sensitivity methods yield meaningless results due to time-local instability of the system. The present work proposes a new method of solving the direct and adjoint linear systems in time, then tests that method’s ability to solve instances of the Lorenz system that exhibit …


Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft Jan 2022

Role Of Inhibition And Spiking Variability In Ortho- And Retronasal Olfactory Processing, Michelle F. Craft

Theses and Dissertations

Odor perception is the impetus for important animal behaviors, most pertinently for feeding, but also for mating and communication. There are two predominate modes of odor processing: odors pass through the front of nose (ortho) while inhaling and sniffing, or through the rear (retro) during exhalation and while eating and drinking. Despite the importance of olfaction for an animal’s well-being and specifically that ortho and retro naturally occur, it is unknown whether the modality (ortho versus retro) is transmitted to cortical brain regions, which could significantly instruct how odors are processed. Prior imaging studies show different …


Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng Jul 2021

Dynamic Parameter Estimation From Partial Observations Of The Lorenz System, Eunice Ng

Theses and Dissertations

Recent numerical work of Carlson-Hudson-Larios leverages a nudging-based algorithm for data assimilation to asymptotically recover viscosity in the 2D Navier-Stokes equations as partial observations on the velocity are received continuously-in-time. This "on-the-fly" algorithm is studied both analytically and numerically for the Lorenz equations in this thesis.