Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 90 of 139

Full-Text Articles in Physical Sciences and Mathematics

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Graduate Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive …


Large-Scale Atomistic Simulations Of Complex And Functional Properties Of Ferroic Materials, Raymond Thomas Walter May 2019

Large-Scale Atomistic Simulations Of Complex And Functional Properties Of Ferroic Materials, Raymond Thomas Walter

Graduate Theses and Dissertations

Ferroelectric (FE) nanostructures have attracted considerable attention as our abilities improve to synthesize them and to predict their properties by theoretical means. Depolarizing field effects at interfaces of FE heterostructures are particularly notable for causing topological defects such as FE vortices and negative dielectric responses in superlattices. In this thesis, I employ two large-scale atomistic techniques, the first-principles-based effective Hamiltonian (HEff) method and the linear-scaling three-dimensional fragment (LS3DF) method. I use these methods to explore optical rotation in FE vortices, electro-optic effects in FE vortices and skyrmions, and voltage amplification via negative capacitance in ferroelectric-paraelectric superlattices. We employ HEff in …


Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty May 2019

Feedforward And Feedback Signals In The Olfactory System, Srimoy Chakraborty

Graduate Theses and Dissertations

The conglomeration of myriad activities in neural systems often results in prominent oscillations. The primary goal of the research presented in this thesis was to study effects of sensory stimulus on the olfactory system of rats, focusing on the olfactory bulb (OB) and the anterior piriform cortex (aPC). Extracellular electrophysiological measurements revealed distinct frequency bands of oscillations in OB and aPC. However, how these oscillatory fluctuations help the animal to process sensory input is not clearly understood. Here we show high frequency oscillations in olfactory bulb carry feedforward signals to anterior piriform cortex whereas feedback from the aPC is predominantly …


Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh May 2019

Optical Enhancement In Periodic Plasmonic Gratings For Sers And Metal-Semiconductor-Metal Photodetectors (Msm-Pds) Applications, Ahmad Aziz Darweesh

Graduate Theses and Dissertations

This dissertation is aimed to numerically study the effect of plasmonic grating electrodes on the efficiency of metal-semiconductor-metal photodetectors (MSM PDs) and the sensitivity of Surface Enhanced Raman Spectroscopy (SERS). This research can benefit many areas of nanoscience and optics, including plasmonic applications, such as, super lenses, nano-scale optical circuits, optical filters, surface plasmon enhanced photo-detectors solar cells, imaging sensors, charge-coupled devices (CCD), and optical-fiber communication systems. Several parameters, wire widths and thickness, gap space, taper angle, and the incident wavelength and angle, were investigated. The goal of this research is to utilize the plasmonic phenomenon by using plasmonic gratings …


Characterization Of Hydride Vapor Phase Epitaxy Grown Gan Substrates For Future Iii-Nitride Growth, Alaa Ahmad Kawagy May 2019

Characterization Of Hydride Vapor Phase Epitaxy Grown Gan Substrates For Future Iii-Nitride Growth, Alaa Ahmad Kawagy

Graduate Theses and Dissertations

The aim of this research is to investigate and characterize the quality of commercially obtained gallium nitride (GaN) on sapphire substrates that have been grown using hydride vapor phase epitaxy (HVPE). GaN substrates are the best choice for optoelectronic applications because of their physical and electrical properties. Even though HVPE GaN substrates are available at low-cost and create the opportunities for growth and production, these substrates suffer from large macro-scale defects on the surface of the substrate.

In this research, four GaN on sapphire substrates were investigated in order to characterize the surface defects and, subsequently, understand their influence on …


Fatigue Performance And Shear Demand Distributions Of Clustered Shear Connectors In Composite Bridge Girders, Brian David Hillhouse Dec 2018

Fatigue Performance And Shear Demand Distributions Of Clustered Shear Connectors In Composite Bridge Girders, Brian David Hillhouse

Graduate Theses and Dissertations

The current American Association of State Highway and Transportation Officials (AASHTO) Bridge Specifications assumes uniform shear flow demands at the steel-concrete interface of composite bridge girders. As stud pitch increases to beyond 24 in or as studs become clustered to account for pre-cast concrete decks, this assumed shear demand distribution may be unrepresentative. Understanding shear transfer and resulting demands on headed studs in composite beams are important for ensuring adequate composite design. This study investigates stud demands in composite bridge girders using large-scale fatigue testing and direct pressure measurements for stud force calculations. In this study, two large-scale composite beam …


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Graduate Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste …


Plasmonic Enhancement Of Photoluminescence And Photobrightening In Cdse Quantum Dots, David Alan French Dec 2018

Plasmonic Enhancement Of Photoluminescence And Photobrightening In Cdse Quantum Dots, David Alan French

Graduate Theses and Dissertations

Quantum dots are gaining recognition not just in the physics and chemistry community, but in the public eye as well. Quantum dot technologies are now being used in sensors, detectors, and even television displays. By exciting quantum dots with light or electricity, they can be made to emit light, and by altering the quantum dot characteristics the wavelength can be finely tuned. The light emitted can be also be made more intense by an increase in the excitation energy. The excitation light can be increased via plasmonic enhancement, leading to increased luminescence. Aside from the relatively steady-state response, quantum dots …


Exfoliation, Synthesis, And Characterization Of Nanoscale Te, Takayuki Hironaka Dec 2018

Exfoliation, Synthesis, And Characterization Of Nanoscale Te, Takayuki Hironaka

Graduate Theses and Dissertations

Since the experimental discovery of graphene, two dimensional materials have enjoyed more attention and emphasis in academic research than nanowires, but the latter are an important area of study for creating 1D materials, or single atom chains, the next generation materials for advancing electronic devices. Atomically thin layers can be generated from 2D materials with weak bonds in one direction, and by applying this concept to one dimensional weakly bonded materials, we hypothesize that single atom chains with atomic-scale diameters may be produced. Tellurium (Te) and selenium (Se) have lattices consisting of spiral chains oriented along the c-axis, and each …


Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie Dec 2018

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie

Graduate Theses and Dissertations

Electrochemical sensors based on the nanostructure of the semiconductor materials are of tremendous interest to be utilized for glucose monitoring. The sensors, based on the nanostructure of the semiconductor materials, are the third generations of the glucose sensors that are fast, sensitive, and cost-effect for glucose monitoring.

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically at different glucose concentrations. …


Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia Dec 2018

Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia

Graduate Theses and Dissertations

The high exciton binding energy in one dimensional (1D) nano-structures makes them prominent for optoelectronic device applications, making it relevant to theoretically investigate their electronic and optical properties. Many-body effects that are not captured by the conventional density functional theory (DFT) have a huge impact in such selenium and tellurium single helical atomic chains. This work goes one step beyond DFT to include the electron self-energy effects within the GW approximation to obtain a corrected quasi-particle electronic structure. Further, the Bethe-Salpeter equation was solved to obtain the absorption spectrum and to capture excitonic effects. Results were obtained using the Hyberstein-Louie …


Scattering Of Few Photon Fields By Two Level Systems In A One Dimensional Geometry, William Konyk Aug 2018

Scattering Of Few Photon Fields By Two Level Systems In A One Dimensional Geometry, William Konyk

Graduate Theses and Dissertations

Recent experimental progress has realized strong, efficient coupling of effective two level systems to waveguides. We study the scattering of multimode photons from such emitters coupled losslessly to the confined geometry of a one dimensional waveguide. We develop novel techniques for describing the scattered state of both single and multi-photon wavepackets and explore how such wavepackets interact with arrays of emitters coupled to a one dimensional waveguide. Finally, we apply these techniques and analyze the capability of two particular systems to act as a quantum conditional logic gate.


Combining Microdialysis And Electrophysiology In Cerebral Cortex To Delineate Functional Implications Of Acetylcholine Gradients, Tazima Nur May 2018

Combining Microdialysis And Electrophysiology In Cerebral Cortex To Delineate Functional Implications Of Acetylcholine Gradients, Tazima Nur

Graduate Theses and Dissertations

The neuronal network in cerebral cortex is a dynamic system that can undergo changes in collective neural activity as the organism changes its behavior. For example, during sleep and quiet restful awake state, many neurons tend to fire together in synchrony. In contrast, during alert awake states, firing patterns of neurons tend to be more asynchronous, firing more independently. These changes in population-level synchrony are defined as changes in cortical state. Response to sensory input is state-dependent, i.e., change in cortical state can impact the sensory information processing in cortex and introduce trial-to-trial variability in response to the same repeated …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang May 2018

The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang

Graduate Theses and Dissertations

One of the objectives of this thesis work was to investigate the cathode performance of lithium cobalt oxide (LiCoO2) incorporated with graphene powder in lithium ion batteries (LIBs). Graphene powder was incorporated into cathode materials to enhance the performance of LIBs. The other objective was to impede the construction of a solid electrolyte interphase (SEI) sheet using graphene sheet coating on its cathode.

The results of this work show that adding graphene powder improved the performance of LiCoO¬2 as a cathode material. With the incorporation of different weight percentages of graphene powder, the LiBs showed distinct changes in their charging …


Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu May 2018

Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu

Graduate Theses and Dissertations

Semiconductor quantum dots (QDs) confine carriers in three dimensions, resulting in atomic-like energy levels as well as size-dependent electrical and optical properties. Self-assembled III-V QD is one of the most studied semiconductor QDs thanks to their well-established fabrication techniques and versatile optical properties. This dissertation presents the photoluminescence (PL) study of the InAs/GaAs QDs with both above bandgap continuous-wave excitation (one-photon excitation) and below-bandgap pulse excitation (two-photon excitation). Samples of ensemble QDs, single QD (SQD), and QDs in a micro-cavity, all grown by molecular beam epitaxy, are used in this study. Morphology of these samples was examined using atomic force …


Diffraction Of Laguerre Gaussian Vortex Beams, Anindya Ambuj May 2018

Diffraction Of Laguerre Gaussian Vortex Beams, Anindya Ambuj

Graduate Theses and Dissertations

The natural phenomenon of waves bending around obstacles is diffraction. Spatial characteristics of the diffraction pattern depends on the incident wave field, the shape, and size of the aperture. The diffraction of a plane wave of light by a slit and a circular aperture produce the sinc-squared and the Airy intensity patterns, respectively. On the contrary, the diffraction of Laguerre-Gauss vortex (LGV) beams by simple apertures such as a slit, circular apertures, and polygons show many unexpected features.

LGV beams have ρ ` e i`φ transverse spatial dependence, where ρ is the distance from the beam axis, φ the azimuthal …


Properties Of Epitaxial Sr0.5ba0.5mno3 Films From First-Principles, Temuujin Bayaraa May 2018

Properties Of Epitaxial Sr0.5ba0.5mno3 Films From First-Principles, Temuujin Bayaraa

Graduate Theses and Dissertations

Magnetoelectric multiferroics, that possess coupled magnetic and electric degrees of freedom, have been receiving ever renewed attention for more than 15 years since they hold promise for the design of novel devices exploiting their cross-coupling.

In this thesis, we present the results of first-principles studies on physical properties of multiferroic Sr0.5Ba0.5MnO3 films under epitaxial compressive and tensile strains, and chemical ordering. We start by reviewing multiferroic materials, a magnetoelectric coupling mechanism and then we give a brief introduction to the first-principles computational methods that are involved in this study.

Here, we report that Sr0.5Ba0.5MnO3 (SBM) films under compressive strain become …


Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner Dec 2017

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner

Graduate Theses and Dissertations

This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001” thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12” × 12” × 1” in total. We use a free-space broadband system comprised of a pair …


Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin Dec 2017

Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin

Graduate Theses and Dissertations

Chalcogen-based layered superconductors with a litharge structure such as FeS and FeSe mono-layers undergo structural and superconducting phase transitions that are tunable by doping. Representing another material platform with a litharge structure but without valence d-electrons, SnO monolayers also display a structural ground state with a degenerate rectangular unit cell at zero temperature and a charge-tunable energy barrier that leads to a thermally-controllable structural phase change. Doped SnO monolayers with rectangular degenerate unit cells give rise to two-dimensional multiferroicity. Their two-dimensional elastic energy landscape adopts a basic analytic expression that is employed to discuss this structural transition. The results contained …


Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling Dec 2017

Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling

Graduate Theses and Dissertations

I have investigated the energy output of active galactic nuclei (AGN) in order to understand how these objects evolve and the impact they may have on host galaxies. First, I looked at a sample of 96 AGN at redshifts $z \sim 2, 3,$ and $4$ which have imaging and thus luminosity measurements in the $griz$ and $JHK$ observed wavebands. For these galaxies, I have co-epochal data across those bands which accounted for variability in AGN luminosity. I used the luminosity measurements in the five bands to construct spectral energy distributions (SED) in the emitted optical-UV bands for each AGN. I …


A Numerical Study Of The Interaction Between One Dimensional Carbyne Chain And Single Stranded Dna, Zeina Salman Aug 2017

A Numerical Study Of The Interaction Between One Dimensional Carbyne Chain And Single Stranded Dna, Zeina Salman

Graduate Theses and Dissertations

resolution at the single nucleotide level when developing DNA sequencers. The purpose of this research was to numerically study the electrical properties associated with the interaction between 1D carbon chain, known as carbyne, and ssDNA. First, the electrical properties of the carbyne chain were calculated. Second, the electrical properties of the carbyne chain were calculated in the presence of different ssDNA bases. Analyzing the differences between the two cases led to determining the effects of these different bases on the electrical properties. The numerical simulation approach conducted in this research was based on the first-principle simulation. The first-principle simulation was …


Characterization Of Nanoparticles Using Solid State Nanopores, Santoshi Nandivada Aug 2017

Characterization Of Nanoparticles Using Solid State Nanopores, Santoshi Nandivada

Graduate Theses and Dissertations

Solid state nanopores are widely used in detection of highly charged biomolecules like DNA and proteins. In this study, we use a solid state nanopore based device to characterize spherical nanoparticles to estimate their size and electrical charge using the principle of resistive pulse technique. The principle of resistive pulse technique is the method of counting and sizing particles suspended in a fluid medium, which are electrophoretically driven through a channel and produce current blockage signals due to giving rise to a change in its initial current. This change in current is denoted as a current blockage or as a …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Discord And Global Discord In Systems Of Coupled Quantum Dots In Driven Cavities With Dissipation, And A Method For The Calculation Of Global Discord, Willa Danielle Rawlinson Dec 2016

Discord And Global Discord In Systems Of Coupled Quantum Dots In Driven Cavities With Dissipation, And A Method For The Calculation Of Global Discord, Willa Danielle Rawlinson

Graduate Theses and Dissertations

In the field of quantum information, which is subdivided into quantum computing and quantum cryptography, quantum correlations are essential for a performance or security boost not achievable with classical means. Various quantum correlation measures exist for evaluating a state’s potential to be a qubit (quantum bit). Entanglement, or nonseparability of quantum states, is the older, better known class of measures. However, for a mixed state, quantum entanglement is an incomplete measure of quantumness. Quantum discord, and its multibody extension global discord, encompass all quantum correlations. We study systems of coupled quantum dots using these measures.

We study the discord of …


Artificial Quantum Many-Body States In Complex Oxide Heterostructures At Two-Dimensional Limit, Xiaoran Liu Dec 2016

Artificial Quantum Many-Body States In Complex Oxide Heterostructures At Two-Dimensional Limit, Xiaoran Liu

Graduate Theses and Dissertations

As the representative family of complex oxides, transition metal oxides, where the lattice,

charge, orbital and spin degrees of freedom are tightly coupled, have been at the forefront

of condensed matter physics for decades. With the advancement of state-of-the-art heteroepitaxial deposition techniques, it has been recognized that combining these oxides on the atomic scale, the interfacial region offers great opportunities to discover emergent phenomena and tune materials' functionality. However, there still lacks general guiding principles for experimentalists, following which one can design and fabricate artificial systems on demand. The main theme of this dissertation is to devise and propose some …


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …