Open Access. Powered by Scholars. Published by Universities.®

Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 115

Full-Text Articles in Anatomy

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo Jan 2024

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo

Electrical & Computer Engineering Faculty Publications

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the …


Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori Jan 2024

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori

Bioelectrics Publications

Staphylococcus aureus is the leading cause of skin and soft-tissue infections (SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. In this study, we measured MRSA inactivation by nanosecond pulsed electric fields (nsPEF), a promising new cell ablation technology. Our results show that treatment with 120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating cellular damage. We anticipated that the perturbation created by nsPEF could increase antibiotic efficacy if nsPEF were applied as a co-treatment. To test this …


Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Analyzing Pseudomonas Aeruginosa With Bacteriophage Tags Using Photoacoustic Flow Cytometry, Jennifer C. Schinke Aug 2023

Analyzing Pseudomonas Aeruginosa With Bacteriophage Tags Using Photoacoustic Flow Cytometry, Jennifer C. Schinke

Electronic Theses and Dissertations

The number of daily bacterial infections is climbing and the CDC explains that this is due to the antibiotic-resistant threat in the United States. Finding a faster way of bacterial identification is necessary as it currently takes 1-4 days for a medical lab to culture and identify bacteria. Photoacoustic flow cytometry (PAFC) can be used as an alternative method resulting in swift identification within an hour (Edgar, 2019). Pseudomonas aeruginosa, cell line PA01, will be coated in up to a few hundred red dyed phages making it detectible by the photoacoustic flow cytometry system. Bacteriophages (phages) are viruses that …


Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov Jun 2023

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Effect Of Amputation On Muscle Structure Properties In A Rabbit Model, Roy Caleb Stubbs May 2023

Effect Of Amputation On Muscle Structure Properties In A Rabbit Model, Roy Caleb Stubbs

Masters Theses

After amputation, muscles in the residual limb are detached from their insertion points and no longer span the missing joints. Our objective was to quantify the effect of amputation-induced disuse on residual muscle structure, an indirect indicator of muscle force-generating capacity. One hind paw was surgically removed at the ankle joint of ten rabbits. At two weeks (n=5) and 4 weeks (n=5) post-amputation and for select muscles (gastrocnemius, soleus, tibialis cranialis, extensor digitorum, and flexor digitorum superficialis), we measured and computed several muscle structure properties. Additionally, we qualitatively assessed the muscle fiber appearance of histological samples at each timepoint. At …


The Effects Of Demographics And Risk Factors On The Morphological Characteristics Of Human Femoropopliteal Arteries, Sayed Ahmadreza Razian, Majid Jadidi, Alexey Kamenskiy Mar 2023

The Effects Of Demographics And Risk Factors On The Morphological Characteristics Of Human Femoropopliteal Arteries, Sayed Ahmadreza Razian, Majid Jadidi, Alexey Kamenskiy

UNO Student Research and Creative Activity Fair

Background: Disease of the lower extremity arteries (Peripheral Arterial Disease, PAD) is associated with high morbidity and mortality. During disease development, the arteries adapt by changing their diameter, wall thickness, and residual deformations, but the effects of demographics and risk factors on this process are not clear.

Methods: Superficial femoral arteries from 736 subjects (505 male, 231 female, 12 to 99 years old, average age 51±17.8 years) and the associated demographic and risk factor variables were used to construct machine learning (ML) regression models that predicted morphological characteristics (diameter, wall thickness, and longitudinal opening angle resulting from the …


Differentiating Axonal From Demyelinating Neuropathies Using Multiparametric Quantitative Mri Of Peripheral Nerves, Jacob D. Baraz, Stephanie Xuan, Sadaf Saba, Xue Yang, Ryan Castoro, Yang Xuan, Alison Roth, Richard D. Dortch, Jun Li, Yongsheng Chen Mar 2023

Differentiating Axonal From Demyelinating Neuropathies Using Multiparametric Quantitative Mri Of Peripheral Nerves, Jacob D. Baraz, Stephanie Xuan, Sadaf Saba, Xue Yang, Ryan Castoro, Yang Xuan, Alison Roth, Richard D. Dortch, Jun Li, Yongsheng Chen

Medical Student Research Symposium

Objectives: To develop a multiparametric quantitative MRI (qMRI) method to track pathological changes in the peripheral neuropathies.

Background: Irrespective of the causes or types of polyneuropathies, peripheral nerves are mainly afflicted by two kinds of pathologies – axonal loss and demyelination. It is critical to differentiate between the two as treatments are different for the two conditions. While nerve conduction studies (NCS) have been used to differentiate the two pathologies in the distal nerves, there are no tools to probe the pathologies in the proximal peripheral nerves. This is particularly needed when distal nerves become non-responsive in NCS.

Methods: We …


Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De Feb 2023

Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De

Engineering Faculty Articles and Research

Colorectal cancer is a life-threatening disease. It is the second leading cause of cancer-related deaths in the United States. Stapled anastomosis is a rapid treatment for colorectal cancer and other intestinal diseases and has become an integral part of routine surgical practice. However, to the best of our knowledge, there is no existing work simulating intestinal anastomosis that often involves sophisticated soft tissue manipulations such as cutting and stitching. In this paper, for the first time, we propose a novel split and join approach to simulate a side-to-side stapled intestinal anastomosis in virtual reality. We mimic the intestine model using …


Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov Jan 2023

Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov

Bioelectrics Publications

Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns–10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15–20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30–40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them …


Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood Jan 2023

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood

Bioelectrics Publications

Nanodiamonds (ND) have attracted significant interest for their use in several biomedical applications. These applications can be very useful if the safety and compatibility of ND are proven. We assessed the effects of ND (100 nm, Carboxylated) on primary macrophages and a macrophage-like cell line and found that these particles are not toxic to these cells at lower concentrations but may interfere with cell functions and differentiation. Internalization of ND by these cells in a time- and dose-dependent manner was mostly via phagocytosis and clathrin-dependent endocytosis and localized to the cytoplasm but not into the nucleus. No significant induction of …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli Jan 2023

Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli

Bioelectrics Publications

Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more …


Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao Jan 2023

Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao

Electrical & Computer Engineering Faculty Publications

High-intensity nanosecond pulse electric fields (nsPEF) can preferentially induce various effects, most notably regulated cell death and tumor elimination. These effects have almost exclusively been shown to be associated with nsPEF waveforms defined by pulse duration, rise time, amplitude (electric field), and pulse number. Other factors, such as low-intensity post-pulse waveform, have been completely overlooked. In this study, we show that post-pulse waveforms can alter the cell responses produced by the primary pulse waveform and can even elicit unique cellular responses, despite the primary pulse waveform being nearly identical. We employed two commonly used pulse generator designs, namely the Blumlein …


Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci Jan 2023

Material Characterization Of Thermoplastic Polyurethane (Tpu) And Thermoplastic Elastomers (Tpe) For Development Of 3d-Printed Surrogate Organs For Medical Training, Anastasia Elizabeth Lucci

Graduate Theses, Dissertations, and Problem Reports

Cadaveric specimens are a necessary, albeit limited, resource for training medical students on basic surgical skills. The availability of surrogate 3D-printed organs would readily allow access to resources that could reduce or potentially eliminate the need for cadaveric specimens or, at a minimum, provide students the opportunity to practice with 3D-printed surrogates before transitioning to those specimens. This research focuses on determining which thermoplastic material most closely mimics mechanical properties such as hardness and stiffness of human organs and allows 3D printing surrogate organs to be used as safe, educational tools. Relatively “soft” materials such as thermoplastic polyurethanes (TPU) and …


Combination Of Statistical Shape Modeling And Statistical Parametric Mapping To Quantify Cartilage Contact Mechanics In Hip Dysplasia, Penny R. Atkins Phd, Shireen Y. Elhabian Phd, Jeffrey A. Weiss Phd, Ross T. Whitaker Phd, Christopher L. Peters Md, Andrew E. Anderson Phd Jul 2022

Combination Of Statistical Shape Modeling And Statistical Parametric Mapping To Quantify Cartilage Contact Mechanics In Hip Dysplasia, Penny R. Atkins Phd, Shireen Y. Elhabian Phd, Jeffrey A. Weiss Phd, Ross T. Whitaker Phd, Christopher L. Peters Md, Andrew E. Anderson Phd

PanaSoMM

Finite element models can predict subject-specific chondrolabral stresses and help to elucidate the effect of under-coverage and incongruency of the hip joint in patients with dysplasia. However, complex stress patterns are difficult to generalize and evaluate statistically. With an established correspondence across shapes from statistical shape modeling (SSM), statistical parametric mapping (SPM) allows for evaluation of local variability while preserving model subject-specificity. Herein, we evaluated the combined application of SSM and SPM to compare cartilage contact stress between control subjects and patients with dysplasia.

Previously published hip joint contact stresses were mapped onto chondrolabral surface meshes and incorporated into an …


Application Of Statistical Shape Modeling To Predict Clinical Metric Of Femoral Head Coverage In Patients With Developmental Dysplasia, Penny R. Atkins Phd, Praful Agrawal Phd, Joseph D. Mozingo Phd, Keisuke Uemura Md, Phd, Kunihiko Tokunaga Md, Christopher L. Peters Md, Shireen Y. Elhabian Phd, Ross T. Whitaker Phd, Andrew E. Anderson Phd Jul 2022

Application Of Statistical Shape Modeling To Predict Clinical Metric Of Femoral Head Coverage In Patients With Developmental Dysplasia, Penny R. Atkins Phd, Praful Agrawal Phd, Joseph D. Mozingo Phd, Keisuke Uemura Md, Phd, Kunihiko Tokunaga Md, Christopher L. Peters Md, Shireen Y. Elhabian Phd, Ross T. Whitaker Phd, Andrew E. Anderson Phd

PanaSoMM

Developmental dysplasia of the hip (DDH) is described as under-coverage of the femoral head by the acetabulum, resulting in mechanical instability. Though DDH is often diagnosed using plain film radiographs, these images cannot adequately capture 3D joint coverage. Herein, we applied a 3D statistical shape model (SSM) to the femur and hemi-pelvis of patients with DDH to objectively measure shape variation and evaluated whether SSM outputs could predict measurements of joint coverage.

The femur and hemi-pelvis were semi-automatically segmented from CT images (83 hips from 47 females with DDH). Surfaces of each hip were reconstructed from segmentations, aligned, and input …


Pulsatility Is A Predictive Marker Of Improved Cardiac Function In Patients With Liquid Matrix-Treated Left Ventricular Assist Devices, Philemon Mikail, Rinku Skaria, Marvin Slepian, Janny Garcia, Richard Smith, Zain Khalpey Jul 2022

Pulsatility Is A Predictive Marker Of Improved Cardiac Function In Patients With Liquid Matrix-Treated Left Ventricular Assist Devices, Philemon Mikail, Rinku Skaria, Marvin Slepian, Janny Garcia, Richard Smith, Zain Khalpey

The VAD Journal

Objective: Left ventricular assist devices (LVADs) are utilized as a bridge to transplant or as destination therapy for patients with end-stage heart failure. Although cardiac offloading from these devices rarely leads to complete remodeling and functional recovery, the use of mesenchymal cells to modulate heart failure has been explored in recent years due to its intrinsic regenerative properties. Current methods of evaluating cardiac function have too much variability, difficulty of access, or require too frequent follow up to create universal weaning protocols. We hypothesized that the administration of amniotic allograft liquid matrix (LM) containing amnion-derived mesenchymal stem cells (aMSCs) in …


Alternative Fixation Of Venous Valves For Bioprosthetic Applications, Makenzie Kapales May 2022

Alternative Fixation Of Venous Valves For Bioprosthetic Applications, Makenzie Kapales

Biomedical Engineering Undergraduate Honors Theses

Venous valve failure allows for the retrograde, or backward, flow of blood into the lower extremities, which leads to Chronic Venous Insufficiency (CVI). CVI infringes upon quality of life through ulceration and can result in death due to Deep Vein Thrombosis (DVT), or blood clots, causing pulmonary embolism. A successful treatment of CVI restores valve function and prevents retrograde blood flow; however, current bioprosthetic venous valves exhibit low patency and high calcification. To improve upon bioprosthetic venous valves and CVI treatment, the University of Arkansas’s Cardiovascular Biomechanics Lab conducts studies with the purpose of comparing the properties and performance of …


The Tin Man Needs A Heart: A Proposed Framework For The Regulation Of Bioprinted Organs, Linda Foit Apr 2022

The Tin Man Needs A Heart: A Proposed Framework For The Regulation Of Bioprinted Organs, Linda Foit

Fordham Law Review

Each day, seventeen people die in the United States while waiting for an organ transplant. At least part of this need could be met by bioprinting, a technology that allows the on-demand production of custom-sized organs from a patient’s own cells. The field of bioprinting is progressing rapidly: the first bioprinted organs have already entered the clinic. Yet, developers of bioprinted organs face significant uncertainty as to how their potentially lifesaving products will be regulated—and by which government agency. Such regulatory uncertainty has the potential to decrease investment and stifle innovation in this promising technological field. This Note examines how …


Design And Development Of Software With A Graphical User Interface To Display And Convert Multiple Microscopic Histology Images, Sayed Ahmadreza Razian, Majid Jadidi, Alexey Kamenskiy Mar 2022

Design And Development Of Software With A Graphical User Interface To Display And Convert Multiple Microscopic Histology Images, Sayed Ahmadreza Razian, Majid Jadidi, Alexey Kamenskiy

UNO Student Research and Creative Activity Fair

Histological images are widely used to assess the microscopic anatomy of biological tissues. Recent advancements in image analysis allow the identification of structural features on histological sections that can help advance medical device development, brain and cancer research, drug discovery, vascular mechanobiology, and many other fields. Histological slide scanners create images in SVS and TIFF formats that were designed to archive image blocks and high-resolution textual information. Because these formats were primarily intended for storage, they are often not compatible with conventional image analysis software and require conversion before they can be used in research. We have developed a user-friendly …


Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov Jan 2022

Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov

Bioelectrics Publications

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and …


In Vitro And In Vivo Correlation Of Skin And Cellular Responses To Nucleic Acid Delivery, M. Bosnjak, K. Znidar, A. Sales Conniff, T. Jesenko, B. Markelc, Nina Semenova, J. Tur, K. Kohena, S. Kranjc Brezar, L. Heller, M. Cemazar Jan 2022

In Vitro And In Vivo Correlation Of Skin And Cellular Responses To Nucleic Acid Delivery, M. Bosnjak, K. Znidar, A. Sales Conniff, T. Jesenko, B. Markelc, Nina Semenova, J. Tur, K. Kohena, S. Kranjc Brezar, L. Heller, M. Cemazar

Bioelectrics Publications

Skin, the largest organ in the body, provides a passive physical barrier against infection and contains elements of the innate and adaptive immune systems. Skin consists of various cells, including keratinocytes, fibroblasts, endothelial cells and immune cells. This diversity of cell types could be important to gene therapies because DNA transfection could elicit different responses in different cell types. Previously, we observed the upregulation and activation of cytosolic DNA sensing pathways in several non-tumor and tumor cell types as well in tumors after the electroporation (electrotransfer) of plasmid DNA (pDNA). Based on this research and the innate immunogenicity of …


The Paradox Of Pulmonary Vascular Resistance: Restoration Of Pulmonary Capillary Recruitment As A Sine Qua Non For True Therapeutic Success In Pulmonary Arterial Hypertension, David Langleben, Stylianos E. Orfanos, Benjamin D. Fox, Nathan Messas, Michele Giovinazzo, John D. Catravas Jan 2022

The Paradox Of Pulmonary Vascular Resistance: Restoration Of Pulmonary Capillary Recruitment As A Sine Qua Non For True Therapeutic Success In Pulmonary Arterial Hypertension, David Langleben, Stylianos E. Orfanos, Benjamin D. Fox, Nathan Messas, Michele Giovinazzo, John D. Catravas

Bioelectrics Publications

Exercise-induced increases in pulmonary blood flow normally increase pulmonary arterial pressure only minimally, largely due to a reserve of pulmonary capillaries that are available for recruitment to carry the flow. In pulmonary arterial hypertension, due to precapillary arteriolar obstruction, such recruitment is greatly reduced. In exercising pulmonary arterial hypertension patients, pulmonary arterial pressure remains high and may even increase further. Current pulmonary arterial hypertension therapies, acting principally as vasodilators, decrease calculated pulmonary vascular resistance by increasing pulmonary blood flow but have a minimal effect in lowering pulmonary arterial pressure and do not restore significant capillary recruitment. Novel pulmonary arterial hypertension …


Eye Movement And Pupil Measures: A Review, Bhanuka Mahanama, Yasith Jayawardana, Sundararaman Rengarajan, Gavindya Jayawardena, Leanne Chukoskie, Joseph Snider, Sampath Jayarathna Jan 2022

Eye Movement And Pupil Measures: A Review, Bhanuka Mahanama, Yasith Jayawardana, Sundararaman Rengarajan, Gavindya Jayawardena, Leanne Chukoskie, Joseph Snider, Sampath Jayarathna

Computer Science Faculty Publications

Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first …


The Heat Shock Protein 90 Inhibitor, At13387, Protects The Alveolo-Capillary Barrier And Prevents Hci-Induced Chronic Lung Injury And Pulmonary Fibrosis, Ruben M.L. Colunga Biancatelli, Pavel Solopov, Christiana Dimitropoulou, Betsy Gregory, Tierney Day, John D. Catravas Jan 2022

The Heat Shock Protein 90 Inhibitor, At13387, Protects The Alveolo-Capillary Barrier And Prevents Hci-Induced Chronic Lung Injury And Pulmonary Fibrosis, Ruben M.L. Colunga Biancatelli, Pavel Solopov, Christiana Dimitropoulou, Betsy Gregory, Tierney Day, John D. Catravas

Bioelectrics Publications

Hydrochloric acid (HCl) exposure causes asthma-like conditions, reactive airways dysfunction syndrome, and pulmonary fibrosis. Heat Shock Protein 90 (HSP90) is a molecular chaperone that regulates multiple cellular processes. HSP90 inhibitors are undergoing clinical trials for cancer and are also being studied in various pre-clinical settings for their anti-inflammatory and anti-fibrotic effects. Here we investigated the ability of the heat shock protein 90 (HSP90) inhibitor AT13387 to prevent chronic lung injury induced by exposure to HCl in vivo and its protective role in the endothelial barrier in vitro. We instilled C57Bl/6J mice with 0.1N HCl (2 µL/g body weight, intratracheally) and …


Alkaline Plasma-Activated Water (Paw) As An Innovative Therapeutic Avenue For Cancer Treatment, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Miao Qi, Dehui Xu, Renwu Zhou, Dingxin Liu, Michael G. Kong Jan 2022

Alkaline Plasma-Activated Water (Paw) As An Innovative Therapeutic Avenue For Cancer Treatment, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Miao Qi, Dehui Xu, Renwu Zhou, Dingxin Liu, Michael G. Kong

Bioelectrics Publications

Plasma-activated water (PAW) is considered to be an effective anticancer agent due to the diverse aqueous reactive oxygen and nitrogen species (RONS: ROS and RNS), but the drawback of low dose and short duration of RONS in acidified PAW limits their clinical application. Herein, this Letter presents an innovative therapeutic avenue for cancer treatment with highly-effective alkaline PAW prepared by air surface plasma. This anticancer alkaline formulation is comprised of a rich mixture of highly chemical RONS and exhibited a prolonged half-life compared to acidified PAW. The H2O2, NO2-, and ONOO-/O2 …


Atmospheric Air Plasma Streamers Deliver Nanosecond Pulses For Focused Electroporation, Shu Xiao, Carol Zhou, Eric Appia, Shirshak Dhali Jan 2022

Atmospheric Air Plasma Streamers Deliver Nanosecond Pulses For Focused Electroporation, Shu Xiao, Carol Zhou, Eric Appia, Shirshak Dhali

Bioelectrics Publications

Background: For electrotherapies that involve electrodes and high-intensity electric fields, such as in tissue ablation, we report a method of pulse delivery that can focus the electric field away from the electrodes, as demonstrated in vitro.

Materials and Methods: To electroporate cells in a monolayer seeded in a 35 mm culture dish, two atmospheric-pressure plasma channels generated by two thin, copper foil electrodes above the surface of the solution provided the current and established the electric field.

Results: Depending on the pulse duration, the plasma channels were observed as corona (100 ns), streamer (300 ns), and mixture of streamer …


Exploring Cell Differentiation Vs. Localization In Engineered Ligament-To-Bone Entheses, Saagar N. Sheth, Michael E. Brown, Jennifer L. Puetzer Jan 2022

Exploring Cell Differentiation Vs. Localization In Engineered Ligament-To-Bone Entheses, Saagar N. Sheth, Michael E. Brown, Jennifer L. Puetzer

Undergraduate Research Posters

The anterior cruciate ligament (ACL) connects to bone via structurally complex insertions known as entheses that translate load from elastic ligament and stiff bone via gradients in organization, composition, and cell phenotype [1]. These gradients are not recreated in graft repair or engineered replacements, yielding limited repair options and high failure rates [2]. Previously, we developed a culture system that uses a tensile-compressive interface to guide ligament fibroblasts to develop early postnatal-like entheses by 6 weeks [3]; however, cells used were isolated from the entirety of the neonatal bovine ACL from bone to bone and likely contained multiple cell phenotypes …


Visuomotor Adaptation During Asymmetric Walking, Charles Napoli Oct 2021

Visuomotor Adaptation During Asymmetric Walking, Charles Napoli

Masters Theses

Necessary for effective ambulation, head stability affords optimal conditions for the perception of visual information during dynamic tasks. This maintenance of head-in-space equilibrium is achieved, in part, by the attenuation of the high frequency impact shock resulting from ground contact. While a great deal of experimentation has been done on the matter during steady state locomotion, little is known about how head stability or dynamic visual acuity is maintained during asymmetric walking.

In this study, fifteen participants were instructed to walk on a split-belt treadmill for ten minutes while verbally reporting the orientation of a randomized Landolt-C optotype that was …