Open Access. Powered by Scholars. Published by Universities.®

Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Anatomy

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo Jan 2024

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo

Electrical & Computer Engineering Faculty Publications

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the …


Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao Jan 2023

Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao

Electrical & Computer Engineering Faculty Publications

High-intensity nanosecond pulse electric fields (nsPEF) can preferentially induce various effects, most notably regulated cell death and tumor elimination. These effects have almost exclusively been shown to be associated with nsPEF waveforms defined by pulse duration, rise time, amplitude (electric field), and pulse number. Other factors, such as low-intensity post-pulse waveform, have been completely overlooked. In this study, we show that post-pulse waveforms can alter the cell responses produced by the primary pulse waveform and can even elicit unique cellular responses, despite the primary pulse waveform being nearly identical. We employed two commonly used pulse generator designs, namely the Blumlein …


Using Pareto Fronts To Evaluate Polyp Detection Algorithms For Ct Colonography, Adam Huang, Jiang Li, Ronald M. Summers, Nicholas Petrick, Amy K. Hara Jan 2007

Using Pareto Fronts To Evaluate Polyp Detection Algorithms For Ct Colonography, Adam Huang, Jiang Li, Ronald M. Summers, Nicholas Petrick, Amy K. Hara

Electrical & Computer Engineering Faculty Publications

We evaluate and improve an existing curvature-based region growing algorithm for colonic polyp detection for our CT colonography (CTC) computer-aided detection (CAD) system by using Pareto fronts. The performance of a polyp detection algorithm involves two conflicting objectives, minimizing both false negative (FN) and false positive (FP) detection rates. This problem does not produce a single optimal solution but a set of solutions known as a Pareto front. Any solution in a Pareto front can only outperform other solutions in one of the two competing objectives. Using evolutionary algorithms to find the Pareto fronts for multi-objective optimization problems has been …


Validating Pareto Optimal Operation Parameters Of Polyp Detection Algorithms For Ct Colonography, Jiang Li, Adam Huang, Nicholas Petrick, Jianhua Yao, Ronald M. Summers, Maryellen L. Giger (Ed.), Nico Karssemeijer (Ed.) Jan 2007

Validating Pareto Optimal Operation Parameters Of Polyp Detection Algorithms For Ct Colonography, Jiang Li, Adam Huang, Nicholas Petrick, Jianhua Yao, Ronald M. Summers, Maryellen L. Giger (Ed.), Nico Karssemeijer (Ed.)

Electrical & Computer Engineering Faculty Publications

We evaluated a Pareto front-based multi-objective evolutionary algorithm for optimizing our CT colonography (CTC) computer-aided detection (CAD) system. The system identifies colonic polyps based on curvature and volumetric based features, where a set of thresholds for these features was optimized by the evolutionary algorithm. We utilized a two-fold cross-validation (CV) method to test if the optimized thresholds can be generalized to new data sets. We performed the CV method on 133 patients; each patient had a prone and a supine scan. There were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading from either the prone or …


Wavelet Analysis In Virtual Colonoscopy, Sharon Greenblum, Jiang Li, Adam Huang, Ronald M. Summers, Armando Manduca (Ed.), Amir A. Amini (Ed.) Jan 2006

Wavelet Analysis In Virtual Colonoscopy, Sharon Greenblum, Jiang Li, Adam Huang, Ronald M. Summers, Armando Manduca (Ed.), Amir A. Amini (Ed.)

Electrical & Computer Engineering Faculty Publications

The computed tomographic colonography (CTC) computer aided detection (CAD) program is a new method in development to detect colon polyps in virtual colonoscopy. While high sensitivity is consistently achieved, additional features are desired to increase specificity. In this paper, a wavelet analysis was applied to CTCCAD outputs in an attempt to filter out false positive detections. 52 CTCCAD detection images were obtained using a screen capture application. 26 of these images were real polyps, confirmed by optical colonoscopy and 26 were false positive detections. A discrete wavelet transform of each image was computed with the MATLAB wavelet toolbox using the …