Open Access. Powered by Scholars. Published by Universities.®

Plant Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 113

Full-Text Articles in Plant Biology

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Quantifying The Role Of Water Quality On Nitrogen Cycling In A Trophic Estuary, Kayla Gonzalez-Boy Nov 2023

Quantifying The Role Of Water Quality On Nitrogen Cycling In A Trophic Estuary, Kayla Gonzalez-Boy

Symposium of Student Scholars

Jobos Bay Estuary is an intertidal, tropical estuary located in southern Puerto Rico. The estuary covers about 12 km2 and has a variety of habitats, such as seagrass beds, mangroves, mud flats, and coral reefs, which play important roles in sediment trapping and water quality maintenance. Seagrasses also serve as nursery and feeding grounds and provide shelter for macrofauna. Currently, the role of seagrasses and water quality on nitrogen (N) cycling in trophic estuaries is not well constrained. Understanding variations in sediment-based effects on N cycling rates and transformations, and how they are associated with water quality, is an …


Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols May 2023

Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols

DU Undergraduate Research Journal Archive

DU Undergraduate Showcase: Research, Scholarship, and Creative Works


Dynamics Of Redox-Driven Molecular Processes In Local And Systemic Plant Immunity, Philip Berg Dec 2022

Dynamics Of Redox-Driven Molecular Processes In Local And Systemic Plant Immunity, Philip Berg

Theses and Dissertations

The work here presents two main parts. In the first part, chapters 1 – 3 focus on dynamical systems modeling in plant immunity, whereas chapters 4 – 6 describe contributions to computational modeling and analysis of proteomics and genomics data. Chapter 1 investigates dynamical and biochemical patterns of reversibly oxidized cysteines (RevOxCys) during effector-triggered immunity (ETI) in Arabidopsis, examines the regulatory patterns associated with Arabidopsis thimet oligopeptidase 1 and 2’s (TOP1 and TOP2), roles in the RevOxCys events during ETI, and analyzes the redox phenotype of the top1top2 mutant. The second chapter investigates the peptidome dynamics during ETI …


The Importance Of Co2 Recapture In The Co2 Concentrating Mechanism Of Chlamydomonas Reinhardtii, Ashwani Rai Jul 2022

The Importance Of Co2 Recapture In The Co2 Concentrating Mechanism Of Chlamydomonas Reinhardtii, Ashwani Rai

LSU Doctoral Dissertations

The aim of this thesis is to investigate the CO2 concentrating mechanism (CCM) of Chlamydomonas reinhardtii and to develop a quick method for estimating the activity of carbonic anhydrases (CAs). The first project demonstrates that there are two almost identical mitochondrial CAs in C. reinhardtii, CAH4 and CAH5, that help to maintain photosynthesis and minimize the leak of CO2 generated by respiration and photorespiration. We used an RNAi approach to reduce the expression of CAH4 and CAH5 so that their physiological functions could be studied. RNAi mutants with low expression of CAH4 and CAH5 have impaired rates …


Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Floating Treatment Wetlands For Brackish Waters: Plant Selection And Nutrient Uptake Potential., Andrea Landaverde May 2022

Floating Treatment Wetlands For Brackish Waters: Plant Selection And Nutrient Uptake Potential., Andrea Landaverde

All Theses

Brackish water bodies in coastal regions provide critical ecosystem services that support human and environmental health. Anthropogenic activities such as agricultural and industrial activities, construction, urban settlements, and tourism contribute to increased inputs of nitrogen (N) and phosphorus (P) in brackish coastal ecosystems. Excess nutrients can lead to impaired water quality and affect marine organisms. Floating treatment wetlands (FTWs) are a vegetated-base technology used to remove contaminants from water column, that has been mainly studied and applied in freshwater systems. Application of FTWs in brackish systems requires further investigation, as high salinity in brackish waters could result in toxicity to …


Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek May 2022

Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek

Chemistry & Biochemistry Undergraduate Honors Theses

Fluorescent labeling is a technique used for visualizing functional groups contained in biomolecules by fluorescence imaging. This technique was used in this project to analyze post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCP), which are the core complexes that harvest sunlight to drive photosynthetic electron transfer. This protein is synthesized in the cytosol and post-translationally targeted to the stroma of chloroplasts. CpSRP43 is a signal recognition particle (SRP) subunit unique to chloroplasts, which has been shown to interact with the stroma-soluble C-terminus of the thylakoid-bound Albino3 insertase (Alb3-Cterm). In the chloroplast stroma, targeting to thylakoids is performed via the cpSRP pathway …


Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage Mar 2022

Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage

Masters Theses

Clarireedia spp. (formerly Sclerotinia homoeocarpaF.T. Bennett) is the causal agent dollar spot, the most economically important turfgrass disease impacting golf courses in North America. The most effective strategy for dollar spot control is repeated application of multiple classes of fungicides. However, reliance on chemical application has led to resistance to four classes of fungicides as well as multidrug resistance (MDR). Fungi are known to detoxify xenobiotics, like fungicides, through transcriptional regulation of three detoxification phases: modification, conjugation and secretion. Little is known, however, of the protein-protein interactions that facilitate these pathways. Following next-generation RNA sequencing of Clarireedia spp., a …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull Jan 2022

The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull

Theses and Dissertations--Plant and Soil Sciences

Secondary metabolites are a broad class of specialized compounds that mediate plant-environment interactions and mitigate stress. It is increasingly clear that many phenylalanine-derived secondary metabolites are nearly indispensable for plant survival and that plants adjust their growth according to their secondary metabolic outputs. Consequently, many phenylalanine-derived secondary metabolites have influence over hormone activity. For instance, multiple phenylpropanoid intermediates and catecholamines alter the sensitivity of plants to the central hormone auxin, which in concert with cytokinin directs most aspects of plant growth and development. This dissertation reviews previous research on the influence of phenylpropanoid intermediates and catecholamines on plants, with a …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Three Lc-Ms Plant Metabolomics Studies Of Hop (Humulus) Species: Wild H. Neomexicanus, Drought Stress, And Agricultural Terroir, Taylan Morcol Sep 2021

Three Lc-Ms Plant Metabolomics Studies Of Hop (Humulus) Species: Wild H. Neomexicanus, Drought Stress, And Agricultural Terroir, Taylan Morcol

Dissertations, Theses, and Capstone Projects

The hop plant (Humulus L., Cannabaceae) is a dioecious, perennial, twining vine with a long history of human use. Nowadays, hop plants are generally grown for their inflorescences (“cones”), which are used in brewing for their phytochemical metabolites. Many of these metabolites are involved in plant stress response and communication. Genetics and environment are two major factors that affect plant metabolism. In three separate metabolomics studies, this project examined the effects of both genetic and environmental factors on hop phytochemistry.

In the first study, 23 hop genotypes were grown in two different locations in the Pacific Northwest region of …


Salicylic Acid Response To Simulated Herbivory In Geographically Distinct T. Heterophylla And H. Discolor Populations, Amy E. Castle May 2021

Salicylic Acid Response To Simulated Herbivory In Geographically Distinct T. Heterophylla And H. Discolor Populations, Amy E. Castle

Honors Projects

It is commonly known that plants may produce salicylic acid as a chemical defense response to wounding, although the phenomenon has usually been observed with regard to insect herbivory. Stem and leaf tissue of two species, Tsuga heterophylla and Holodiscus discolor, which are often eaten by deer, were extracted in methanol and analyzed by HPLC to quantify salicylic acid concentration in experimentally wounded or control samples. No salicylic acid response was detectable in T. heterophylla, suggesting it is a less useful candidate species for future study. Some but not all H. discolorsamples had a measurable salicylic acid …


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …


Sterol Biosynthesis In Four Green Algae: A Bioinformatic Analysis Of The Ergosterol Versus Phytosterol Decision Point, Adam Voshall, Nakeirah T.M. Christie, Suzanne L. Rose, Maya Khasin, James L. Van Etten, Jennifer E. Markham, Wayne R. Riekhof, Kenneth Nickerson Jan 2021

Sterol Biosynthesis In Four Green Algae: A Bioinformatic Analysis Of The Ergosterol Versus Phytosterol Decision Point, Adam Voshall, Nakeirah T.M. Christie, Suzanne L. Rose, Maya Khasin, James L. Van Etten, Jennifer E. Markham, Wayne R. Riekhof, Kenneth Nickerson

School of Biological Sciences: Faculty Publications

Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and bsitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis …


Genetic Analysis Of Cellular Adhesion In Arabidopsis Thaliana, Andrew Close Bolender Jan 2021

Genetic Analysis Of Cellular Adhesion In Arabidopsis Thaliana, Andrew Close Bolender

Honors Projects

Plant cell adhesion is mediated by the extracellular matrix (ECM) or cell wall and plays an important role in plant morphogenesis and development. The amount, modification, and cleavage of pectin in the cell wall are major contributors to the adhesive properties of the ECM. To gain a more complete picture of plant cell adhesion processes, Arabidopsis thaliana seedlings were previously mutagenized and screened for hypocotyl adhesion defects. Genomic sequencing of one plant exhibiting an adhesion defect, isolate 242, showed that two mutations, one in cellulose synthase (CesA1) and another in a sugar transporter, are candidates for the causative mutation. This …


Assessing Stress Tolerance Of Organelle Small Heat Shock Protein Mutants In Arabidopsis Thaliana, Parth Patel Dec 2020

Assessing Stress Tolerance Of Organelle Small Heat Shock Protein Mutants In Arabidopsis Thaliana, Parth Patel

Masters Theses

Molecular chaperones are proteins found in virtually every organism and are essential to cell survival. When plants are heat stressed, they upregulate and downregulate multiple genes, many of which are associated with the heat shock response. Small heat shock proteins (sHSPs) are one class of molecular chaperones that are upregulated during heat shock. They are proposed to act as the first line of defense by binding to heat sensitive proteins and preventing their irreversible aggregation. However, many details of sHSP function remain to be discovered and exactly what proteins they protect is unresolved. In addition to cytosolic sHSPs found in …


Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis Nov 2020

Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis

Department of Biochemistry: Dissertations, Theses, and Student Research

Sphingolipids are a diverse group of lipids recognized as important components of cellular membranes and regulators of processes during development and in response to environmental stresses. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is a primary regulatory point for homeostasis. ORM proteins have been identified as negative regulators of SPT activity, however the mechanistic details of the regulation are only beginning to be understood. In this work, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis thaliana. Furthermore, the study of a structural ORM1 variant provided information about a transmembrane …


Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich Oct 2020

Molecular Identification And Characterization Of Viral Pathogens Infecting Sweet Cherry, Aaron J. Simkovich

Electronic Thesis and Dissertation Repository

Stone fruits are a valuable crop grown worldwide, however pathogens such as viruses threaten fruit production by reducing tree health and fruit yield. In an orchard within the Niagara region of Ontario, symptoms typical of viral infection such as chlorosis and leaf deformation were seen on sweet cherry (Prunus avium L.) trees. Next generation sequencing was performed on symptomatic and asymptomatic leaves and four viruses were identified. On the tree displaying the most severe symptoms, Prune dwarf virus (PDV), was the only virus detected. A survey conducted during this work showed 42% of cherry trees on a single …


Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther Jul 2020

Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther

Doctoral Dissertations

Many legumes form a symbiosis with nitrogen-fixing bacteria found in the soil. This relationship is beneficial to both the plant and the bacteria; the plant receives nitrogen that is otherwise limited, and the bacteria receive fixed carbon. Upon sensing the bacteria, the plant forms a new organ (the nodule) where the bacteria are housed within the cells. Many genes are required for the proper formation and function of nodules; this dissertation is broadly focused on how genes required for nitrogen-fixing symbiosis are co-opted from other cellular processes and how they are specialized for symbiosis. Protein trafficking from the plant to …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Characterizing The Role Of Β-Amylase3 In Cold Stress Response And Recovery In Arabidopsis Thaliana, Isabelle G. Houston May 2020

Characterizing The Role Of Β-Amylase3 In Cold Stress Response And Recovery In Arabidopsis Thaliana, Isabelle G. Houston

Senior Honors Projects, 2020-current

Starch is a polymer of glucose that is used as an energy store in plants. Mobilization of starch has implications in abiotic stress survival and recovery. While the importance of carbon and energy allocation in plant survival has been explored, the specific roles of starch degrading enzymes in plant responses to stress are still unclear. β-Amylase3, or BAM3, is the principle starch degrading enzyme at night and is transcriptionally upregulated in response to cold stress in the plant Arabidopsis thaliana. Using single and quadruple knockout mutant plants, I aimed to clarify the role of BAM3 in the response to …


Modification, Verification Of Sequence And Optimization Of Expression Of P297f An Inactive Mutant Of Flavonol Specific Glucosyltransferase From Grapefruit (Cp3gt), Sarah Fox May 2020

Modification, Verification Of Sequence And Optimization Of Expression Of P297f An Inactive Mutant Of Flavonol Specific Glucosyltransferase From Grapefruit (Cp3gt), Sarah Fox

Undergraduate Honors Theses

Citrus fruits are widely consumed and can offer various health benefits. One enzyme found in grapefruits, Citrus paradisi flavonol specific 3-O-glucosyltransferase (CP3GT), catalyzes the addition of glucose to one specific flavonoid class and at only one site. These flavonoids are plant secondary metabolites that can be used in a variety of plant functions including signaling and protection. The only class of flavonoids that CP3GT glucosylates is flavonols, and this specificity is of interest to study for potential benefits in biotechnology and enzyme modeling. In order to study this enzyme and its structure, a variety of mutants were created using site-directed …


Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das May 2020

Subcellular Localization Of Tobacco Sabp2 Under Normal And Stress Conditions, Sanjeev Das

Undergraduate Honors Theses

Subcellular Localization of Tobacco SABP2 under Normal and Stress Conditions

Salicylic acid (SA), a phytohormone, plays an important role in plant physiology. SA mediated innate immune pathway is an important pathway for plant immunity against pathogens. Plants resisting pathogen infection synthesize higher levels of Methyl Salicylate (MeSA), which is then converted to SA by the esterase activity of Salicylic Acid Binding Protein 2 (SABP2). The high level of the converted SA leads to enhanced pathogen resistance. The study of subcellular localization of a protein is critical in explaining its potential biochemical functions. SABP2 tagged with eGFP was expressed transiently in …


Functions Of Cdk/Cyclin Complexes In Endoreplication Regulation By The Cdk Inhibitor Siamese, Kai Wang Mar 2020

Functions Of Cdk/Cyclin Complexes In Endoreplication Regulation By The Cdk Inhibitor Siamese, Kai Wang

LSU Doctoral Dissertations

Arabidopsis trichome (leaf hair) is a specialized single cell extended from epidermal cell on the leaves, which is a typical endoreplication and is also known as endoreduplication. Several D-type cyclins were tested to check the cell division in trichome, and the trichome expressing either CYCB1;2 or CDKB2;2 cannot trigger cell division, even if simultaneous expression of CYCB1;2 and CDKB2;2 failed to produce mitosis in trichome. Only CYCD3;1 specifically promotes multicellular trichome. cdkb1;1cdbk1;2 double mutants and sim cdkb1;1cdkb1;2 triple mutants exhibit the phenotype similar to the wild type and very limited cell division respectively. Overexpression of a CDKB1;1 dominant-negative construct that …


It’S Not Easy Being Green: A Study Of The Chemical Phenology Of The Eastern Hemlock Throughout A Growing Season, Nick Houseman, Evan Preisser May 2019

It’S Not Easy Being Green: A Study Of The Chemical Phenology Of The Eastern Hemlock Throughout A Growing Season, Nick Houseman, Evan Preisser

Senior Honors Projects

Phenology is the study of seasonally timed developmental events that are driven by environmental cues. Phenolic compounds and terpenoids are the two main classes of secondary metabolites present in conifer needles, and speaking generally, they correlate with needle age. Understanding the phenology of secondary metabolites is important, since variation in these compounds can affect a tree’s resistance to pest and pathogen attack. Terpenoids function in a wide array of ecological processes vital to conifer survival, including regulating forest dynamics through allelopathic inhibition of seed germination, altering rates of soil nutrient cycling and nitrification, and conferring resistance to pathogenic fungi and …


Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston Jun 2018

Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston

Department of Biochemistry: Faculty Publications

Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane …


Defective Aba-Mediated Sugar Signalling Pathway In An Established Arabidopsis Thaliana Cell Suspension Culture Explains Its Stay-Green Phenotype At High Sugar Concentrations, Avery Mccarthy Jun 2018

Defective Aba-Mediated Sugar Signalling Pathway In An Established Arabidopsis Thaliana Cell Suspension Culture Explains Its Stay-Green Phenotype At High Sugar Concentrations, Avery Mccarthy

Electronic Thesis and Dissertation Repository

An unusual sugar insensitive phenotype was identified in an established cell suspension culture of Arabidopsis thaliana. We characterized the physiology, biochemistry and genetics of the sugar insensitive cell culture, in order to identify factors contributing to the phenotype. Chlorophyll levels of the cell suspension culture were insensitive to high sucrose (6-15% w/v) and maintained a green phenotype. Immunoblotting indicated that levels of key photosynthetic proteins (PsaA, Lhcb2 and Rubisco) increased as a function of external sucrose concentration. The green cell culture was photosynthetically competent based on light-dependent, CO2-saturated rates of O2 evolution as well as Fv/Fm …