Open Access. Powered by Scholars. Published by Universities.®

Plant Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 39

Full-Text Articles in Plant Biology

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …


Sterol Biosynthesis In Four Green Algae: A Bioinformatic Analysis Of The Ergosterol Versus Phytosterol Decision Point, Adam Voshall, Nakeirah T.M. Christie, Suzanne L. Rose, Maya Khasin, James L. Van Etten, Jennifer E. Markham, Wayne R. Riekhof, Kenneth Nickerson Jan 2021

Sterol Biosynthesis In Four Green Algae: A Bioinformatic Analysis Of The Ergosterol Versus Phytosterol Decision Point, Adam Voshall, Nakeirah T.M. Christie, Suzanne L. Rose, Maya Khasin, James L. Van Etten, Jennifer E. Markham, Wayne R. Riekhof, Kenneth Nickerson

School of Biological Sciences: Faculty Publications

Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and bsitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis …


Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis Nov 2020

Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis

Department of Biochemistry: Dissertations, Theses, and Student Research

Sphingolipids are a diverse group of lipids recognized as important components of cellular membranes and regulators of processes during development and in response to environmental stresses. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is a primary regulatory point for homeostasis. ORM proteins have been identified as negative regulators of SPT activity, however the mechanistic details of the regulation are only beginning to be understood. In this work, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis thaliana. Furthermore, the study of a structural ORM1 variant provided information about a transmembrane …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


It’S Not Easy Being Green: A Study Of The Chemical Phenology Of The Eastern Hemlock Throughout A Growing Season, Nick Houseman, Evan Preisser May 2019

It’S Not Easy Being Green: A Study Of The Chemical Phenology Of The Eastern Hemlock Throughout A Growing Season, Nick Houseman, Evan Preisser

Senior Honors Projects

Phenology is the study of seasonally timed developmental events that are driven by environmental cues. Phenolic compounds and terpenoids are the two main classes of secondary metabolites present in conifer needles, and speaking generally, they correlate with needle age. Understanding the phenology of secondary metabolites is important, since variation in these compounds can affect a tree’s resistance to pest and pathogen attack. Terpenoids function in a wide array of ecological processes vital to conifer survival, including regulating forest dynamics through allelopathic inhibition of seed germination, altering rates of soil nutrient cycling and nitrification, and conferring resistance to pathogenic fungi and …


Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston Jun 2018

Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston

Department of Biochemistry: Faculty Publications

Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane …


Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra Oct 2017

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra

Biology Faculty Publications & Presentations

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream …


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at …


Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka Jul 2017

Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has …


Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal Nov 2016

Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal

Biology Faculty Publications & Presentations

Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed …


Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau Aug 2016

Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau

Faculty Scholarship – Chemistry

Samples of numerous plant species were received from the southwestern part of the USA, from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to chromatographic methods. Some of the crude residues and some of the fractions were tested for anti-tuberculosis activity and/or antibacterial activity.

In a general way, bioactive natural products are dealt with very well by Liang & Fang. More specifically, the southwestern part of the United States has a large variety of indigenous plants many of which have not been investigated for …


Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra Dec 2015

Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra

Biology Faculty Publications & Presentations

Chloroplasts depend on the nucleus for much of their proteome. Consequently, strong transcriptional coordination exists between the genomes, which is attuned to the developmental and physiological needs of the organelle. Recent studies highlight that the post-translational modifier ubiquitin adds another layer to plastid homeostasis and even helps eliminate damaged chloroplasts.


Linking Old Librarianship To New: Aligning 5-Steps Of The Innovator's Dna In Creating Thematic Discovery Systems For The Everglades, L. Bryan Cooper, Margarita Perez Martinez May 2015

Linking Old Librarianship To New: Aligning 5-Steps Of The Innovator's Dna In Creating Thematic Discovery Systems For The Everglades, L. Bryan Cooper, Margarita Perez Martinez

Works of the FIU Libraries

This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API.

Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in …


The Fragile Fiber1 Kinesin Contributes To Cortical Microtubule-Mediated Trafficking Of Cell Wall Components, Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. Mcclosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, Ram Dixit Mar 2015

The Fragile Fiber1 Kinesin Contributes To Cortical Microtubule-Mediated Trafficking Of Cell Wall Components, Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. Mcclosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, Ram Dixit

Biology Faculty Publications & Presentations

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 …


Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jennifer E. Markham, Xuemin Wang Oct 2014

Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jennifer E. Markham, Xuemin Wang

Department of Biochemistry: Faculty Publications

In plants, fatty acids are primarily synthesized in plastids and then transported to the endoplasmic reticulum (ER) for synthesis of most of the complex membrane lipids, including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis; its disruption leads to an altered plant growth. Phospholipase As have been implicated in the trafficking of fatty acids from plastids to the ER. Previously, we found that overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size and altered anisotropic cell expansion. Here, we determined the …


Antimicrobial And Antiinsectan Phenolic Metabolites Of Dalea Searlsiae, Gil Belofsky, Mario Aronica, Eric Foss, Jane Diamond, Felipe Santana, Jacob Darley, Patrick F. Dowd, Christina M. Coleman, Daneel Ferreira Apr 2014

Antimicrobial And Antiinsectan Phenolic Metabolites Of Dalea Searlsiae, Gil Belofsky, Mario Aronica, Eric Foss, Jane Diamond, Felipe Santana, Jacob Darley, Patrick F. Dowd, Christina M. Coleman, Daneel Ferreira

All Faculty Scholarship for the College of the Sciences

Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A–D (14) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 15, 7 …


Arabidopsis Accelerated Cell Death 11, Acd11, Is A Ceramide-1-Phosphate Transfer Protein And Intermediary Regulator Of Phytoceramide Levels, Dhirendra K. Simanshu, Xiuhong Zhai, David Munch, Daniel Hofius, Jennifer E. Markham, Jacek Bielawski, Alicja Bielawska, Lucy Malinina, Julian G. Molotkovsky, John W. Mundy, Dinshaw J. Patel, Rhoderick E. Brown Jan 2014

Arabidopsis Accelerated Cell Death 11, Acd11, Is A Ceramide-1-Phosphate Transfer Protein And Intermediary Regulator Of Phytoceramide Levels, Dhirendra K. Simanshu, Xiuhong Zhai, David Munch, Daniel Hofius, Jennifer E. Markham, Jacek Bielawski, Alicja Bielawska, Lucy Malinina, Julian G. Molotkovsky, John W. Mundy, Dinshaw J. Patel, Rhoderick E. Brown

Department of Biochemistry: Faculty Publications

The accelerated cell death 11 (acd11) mutant of Arabidopsis provides a genetic model for studying immune response activation and localized cellular suicide that halt pathogen spread during infection in plants. Here, we elucidate ACD11 structure and function and show that acd11 disruption dramatically alters the in vivo balance of sphingolipid mediators that regulate eukaryotic-programmed cell death. In acd11 mutants, normally low ceramide-1- phosphate (C1P) levels become elevated, but the relatively abundant cell death inducer phytoceramide rises acutely. ACD11 exhibits selective intermembrane transfer of C1P and phyto-C1P. Crystal structures establish C1P binding via a surface-localized, phosphate headgroup recognition center …


Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit Dec 2013

Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit

Biology Faculty Publications & Presentations

Throughout the eukaryotic world, kinesins serve as molecular motors for the directional transport of cellular cargo along microtubule tracks. Plants contain a large number of kinesins that have conserved as well as specialized functions. These functions depend on mechanisms that regulate when, where and what kinesins transport. In this review, we highlight recent studies that have revealed conserved modes of regulation between plant kinesins and their non-photosynthetic counterparts. These findings lay the groundwork for understanding how plant kinesins are differentially engaged in various cellular processes that underlie plant growth and development.


Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit Nov 2013

Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit

Biology Faculty Publications & Presentations

Highlights

  • Severing primarily depolymerizes the overlying CMT at crossover sites
  • Severing probability increases nonlinearly with crossover time
  • Katanin localizes to crossover sites and is required for severing
  • Loss of katanin activity prevents the formation of coaligned CMT arrays

Summary
The noncentrosomal cortical microtubules (CMTs) of land plants form highly ordered parallel arrays that mediate cell morphogenesis by orienting cellulose deposition [1, 2 and 3]. Since new CMTs initiate from dispersed cortical sites at random orientations [4], parallel array organization is hypothesized to require selective pruning of CMTs that are not in the dominant orientation. Severing of CMTs at crossover sites …


Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell Aug 2013

Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. …


Immunomodulatory Activity Of Sambucus Mexicana And Trichostema Lanatum On Lps Stimulated Raw 264.7 Macrophage Cells, Victoria Hester, P. Matthew Joyner Jul 2013

Immunomodulatory Activity Of Sambucus Mexicana And Trichostema Lanatum On Lps Stimulated Raw 264.7 Macrophage Cells, Victoria Hester, P. Matthew Joyner

Featured Research

Chumash medicinal plants Sambucus mexicana (Mexican elderberry) and Trichostema lanatum (woolly blue curls) were tested for immunomodulatory activity. Anti-inflammatory effects were determined by treating LPS induced RAW 264.7 macrophage cells with plant extracts and measuring the levels of cytokines: tumor necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10). We hypothesized that both plants would exert immunomodulatory activity by reducing the pro-inflammatory production of TNF-alpha or by promoting M2 polarization with a concurrent increase in IL-10 production. At concentration 0.01 mg/mL woolly blue curls and Mexican elderberry demonstrated anti-inflammatory activity by reducing the concentration of TNF-alpha in vitro, while levels of …


Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit Jul 2013

Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit

Biology Faculty Publications & Presentations

The interphase cortical microtubules (CMTs) of plant cells form strikingly ordered arrays in the absence of a dedicated microtubule-organizing center. Considerable research effort has focused on activities such as bundling and severing that occur after CMT nucleation and are thought to be important for generating and maintaining ordered arrays. In this review, we focus on how nucleation affects CMT array organization. The bulk of CMTs are initiated from γ-tubulin-containing nucleation complexes localized to the lateral walls of pre-existing CMTs. These CMTs grow either at an acute angle or parallel to the pre-existing CMT. Although the impact of microtubule-dependent nucleation is …


Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit Oct 2012

Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …


Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby May 2012

Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby

Senior Honors Projects

Cellulose is a carbohydrate polymer that is composed of repeating glucose subunits. Being the most abundant organic compound in the biosphere and comprising a large percentage of all plant biomass, cellulose is extremely plentiful and has a significant role in nature. Cellulose is present in plant cell walls, in commercial products such as those made from wood or cotton, and is of interest to the biofuel industry as a potential alternative fuel source. Although indigestible by humans, cellulose is nutritionally valuable, serving as a dietary fiber. Because of its ubiquity and importance in many areas, studying cellulose will prove to …


Connections Between Sphingosine Kinase And Phospholipase D In The Abscisic Acid Signaling Pathway In Arabidopsis, Liang Guo, Girish Mishra, Jennifer E. Markham, Maoyin Li, Amanda Tawfall, Ruth Welti, Xuemin Wang Mar 2012

Connections Between Sphingosine Kinase And Phospholipase D In The Abscisic Acid Signaling Pathway In Arabidopsis, Liang Guo, Girish Mishra, Jennifer E. Markham, Maoyin Li, Amanda Tawfall, Ruth Welti, Xuemin Wang

Department of Biochemistry: Faculty Publications

Background: Sphingosine kinase (SPHK) and phospholipaseD(PLD) produce different lipid mediators involved in abscisic acid (ABA) response.

Results: Ablation of SPHKs and PLDα1 attenuates ABA-induced production of LCBPs and PA. Phyto-S1P closes stomata in sphk1, sphk2, but not in pldα1, whereas PA closes stomata in all mutants.

Conclusion: SPHK acts upstream of PLDα1, whereas PLDα1 promotes SPHK.

Significance: The roles of lipid messengers in the ABA signaling pathway are clarified.


Single Molecule Analysis Of The Arabidopsis Fra1 Kinesin Shows That It Is A Functional Motor Protein With Unusually High Processivity, Chuanmei Zhu, Ram Dixit Sep 2011

Single Molecule Analysis Of The Arabidopsis Fra1 Kinesin Shows That It Is A Functional Motor Protein With Unusually High Processivity, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

The Arabidopsis FRA1 kinesin contributes to the organization of cellulose microfibrils through an unknown mechanism. The cortical localization of this kinesin during interphase raises the possibility that it transports cell wall-related cargoes along cortical microtubules that either directly or indirectly influence cellulose microfibril patterning. To determine whether FRA1 is an authentic motor protein, we combined bulk biochemical assays and single molecule fluorescence imaging to analyze the motor properties of recombinant, GFP-tagged FRA1 containing the motor and coiled-coil domains (designated as FRA1(707)–GFP). We found that FRA1(707)–GFP binds to microtubules in an ATP-dependent manner and that its ATPase activity is dramatically stimulated …


Sphingolipids Containing Very-Long-Chain Fatty Acids Define A Secretory Pathway For Specific Polar Plasma Membrane Protein Targeting In Arabidopsis, Jennifer E. Markham, Diana Molino, Lionel Gissot, Yannick Bellec, Kian Hématy, Jessica Marion, Katia Belcram, Jean-Christophe Palauqui, Béatrice Satiat-Jeunemaître, Jean-Denis Faure Jun 2011

Sphingolipids Containing Very-Long-Chain Fatty Acids Define A Secretory Pathway For Specific Polar Plasma Membrane Protein Targeting In Arabidopsis, Jennifer E. Markham, Diana Molino, Lionel Gissot, Yannick Bellec, Kian Hématy, Jessica Marion, Katia Belcram, Jean-Christophe Palauqui, Béatrice Satiat-Jeunemaître, Jean-Denis Faure

Department of Biochemistry: Faculty Publications

Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide synthase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain (C > 18 carbons) but not long-chain sphingolipids are essential for plant development. Reduction of very-long-chain fatty acid sphingolipid levels leads in particular to auxin-dependent inhibition of lateral root emergence that is associated with selective aggregation of the plasma membrane auxin carriers AUX1 and PIN1 in the cytosol. Defective targeting of polar auxin carriers is characterized by specific aggregation of Rab-A2a– …