Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Iron Acquisition Strategies Employed By Staphylococcus Lugdunensis, Jeremy R. Brozyna Aug 2016

Iron Acquisition Strategies Employed By Staphylococcus Lugdunensis, Jeremy R. Brozyna

Electronic Thesis and Dissertation Repository

Iron is crucial for many cellular processes including DNA synthesis and respiration. The majority of iron in mammals is in heme within hemoproteins, inside cells, or transported through circulation by the glycoprotein transferrin, which constitutes the greatest iron source in serum. Limiting iron availability is an important facet of nutritional immunity to help prevent infection.

Staphylococcus lugdunensis is a human skin commensal and opportunistic pathogen capable of causing a variety of infections, including particularly aggressive endocarditis. It is an emerging pathogen with elevated virulence compared to other species of coagulase-negative staphylococci. The versatility of S. lugdunensis to infect multiple niches ...


Fine-Tuning Of Substrate Affinity Leads To Alternative Roles Of Mycobacterium Tuberculosis Fe2+-Atpases, Sarju J. Patel, Brianne E. Lewis, Jarukit E. Long, Subhalaxmi Nambi, Christopher M. Sassetti, Timothy L. Stemmler, Jose M. Arguello May 2016

Fine-Tuning Of Substrate Affinity Leads To Alternative Roles Of Mycobacterium Tuberculosis Fe2+-Atpases, Sarju J. Patel, Brianne E. Lewis, Jarukit E. Long, Subhalaxmi Nambi, Christopher M. Sassetti, Timothy L. Stemmler, Jose M. Arguello

UMass Metabolic Network Publications

Little is known about iron efflux transporters within bacterial systems. Recently, the participation of Bacillus subtilis PfeT, a P1B4-ATPase, in cytoplasmic Fe(2+) efflux has been proposed. We report here the distinct roles of mycobacterial P1B4-ATPases in the homeostasis of Co(2+) and Fe(2+) Mutation of Mycobacterium smegmatis ctpJ affects the homeostasis of both ions. Alternatively, an M. tuberculosis ctpJ mutant is more sensitive to Co(2+) than Fe(2+), whereas mutation of the homologous M. tuberculosis ctpD leads to Fe(2+) sensitivity but no alterations in Co(2+) homeostasis. In vitro, the three enzymes are activated by both ...


Iron-Induced Complement Dysregulation In The Retinal Pigment Epithelium: Implications For Age-Related Macular Degeneration, Yafeng Li Jan 2015

Iron-Induced Complement Dysregulation In The Retinal Pigment Epithelium: Implications For Age-Related Macular Degeneration, Yafeng Li

Publicly Accessible Penn Dissertations

Age-related macular degeneration (AMD), typically manifesting as a loss of central vision in elderly persons, is a leading cause of blindness in highly developed nations. AMD is a multifactorial disease associated with aging, oxidative stress, complement dysregulation, dsRNA toxicity, among many other possible factors. The formation of extracellular deposits, termed drusen, below the retinal pigment epithelial (RPE) cell layer in the outer retina is a pathognomonic hallmark of AMD. The composition of drusen is complex, but identified elements include iron, complement components, and amyloid protein derivatives. This suggests that iron may be involved in the pathophysiology of AMD. Further support ...


Sequence Analysis Of Maize Yellow Stripe3 Candidate Genes, Dennis B. Depaolo Jan 2014

Sequence Analysis Of Maize Yellow Stripe3 Candidate Genes, Dennis B. Depaolo

Masters Theses

The work presented here focuses on the molecular mechanism of phytosiderophore secretion in graminaceous plants. In maize, yellow stripe3 (ys3) is a mutant that is deficient in its ability to secrete iron-chelating compounds of the mugineic acid family known as phytosiderophores. Phytosiderophores are specific to grasses and are used for the acquisition of iron. Genetic linkage mapping of the ys3 locus lead to a region of interest on chromosome 3 defined by marker UMC1773. The sequence of eleven candidate genes (GRMZM2G390345, GRMZM2G390374, GRMZM2G342821, GRMZM5G800764, GRMZM2G502560, GRMZM5G849435, GRMZM2G105766, GRMZM5G876835, GRMZM2G036976, GRMZM2G502563, miR167g) revealed several small deletions and point mutations within the ...


The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil Jan 2013

The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil

Wayne State University Dissertations

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. The importance of CL in human health is underscored by the observation that perturbation of CL ...


Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat Jan 2011

Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat

Wayne State University Dissertations

MOLECULAR DETAILS OF THE MITOCHONDRIAL IRON SULFUR CLUSTER ASSEMBLY PATHWAY

Iron-sulfur clusters are an important class of prosthetic group involved in electron transfer, enzyme catalysis, and regulation of gene expression. Their biosynthesis requires complex machinery located within the mitochondrion since free iron and sulfide are extremely toxic to the cell. Defects in this pathway results in several diseases such as Friedreich's Ataxia (FRDA), Sideroblastic Anemia and ISCU Myopathy. Therefore molecular details of the biogenesis pathway will provide deep insight in the pathway and treatment options for these diseases. FRDA is caused by deficiency of a single protein called as ...


Changes In Hepatic Gene Expression In Dogs With Experimentally Induced Nutritional Iron Deficiency, M Fry, C Kirk, J Liggett, G Daniel, Seung Baek, J Gouffon, P Chimakurthy, B Rekapalli Dec 2008

Changes In Hepatic Gene Expression In Dogs With Experimentally Induced Nutritional Iron Deficiency, M Fry, C Kirk, J Liggett, G Daniel, Seung Baek, J Gouffon, P Chimakurthy, B Rekapalli

Seung J Baek

BACKGROUND AND OBJECTIVE: We investigated hepatic gene expression in dogs with experimentally induced nutritional iron deficiency (ID). Our hypothesis was that ID would result in decreased hepcidin gene expression, and possibly in altered expression of other genes associated with iron metabolism. METHODS: Liver biopsies were collected from each of 3 dogs before induction of ID, at the point of maximal ID, and after resolution of ID. Using Affymetrix microarray technology and analytical tools specifically designed for microarray data, we identified genes that had at least a 2-fold change in expression in response to ID. Four genes were selected for further ...