Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Retro-Structural Analysis Of The Four Helix Bundle Motif In Binuclear Proteins, Walker Pedigo, Maggie Smith May 2022

Retro-Structural Analysis Of The Four Helix Bundle Motif In Binuclear Proteins, Walker Pedigo, Maggie Smith

Honors Theses

Protein structure is directly related to protein function. There are four levels of protein structure: primary, secondary, tertiary, and quaternary. The interactions amongst the structural components of a protein give rise to its unique characteristics. The four helix bundle motif is a common structural trait in a variety of binuclear proteins. In this study, PyMOL, a molecular visualization system, was used to analyze binuclear proteins that possess a four helix bundle. Images of proteins containing dicopper, diiron, and dimanganese sites were captured. The images were compiled into figures for each individual protein. After creating the figures, each protein was further …


Cellular And Molecular Alterations Associated With Ovarian And Renal Cancer Pathophysiology, Ravneet Kaur Chhabra Sep 2021

Cellular And Molecular Alterations Associated With Ovarian And Renal Cancer Pathophysiology, Ravneet Kaur Chhabra

USF Tampa Graduate Theses and Dissertations

Elucidating molecular alterations underlying tumor development and chemoresistance are critical to expand our understanding of the disease pathophysiology. This dissertation is focused on analyzing the cellular and molecular alterations associated with LPA-induced chemoresistance in clear cell renal cell carcinoma (ccRCC) cells and chronic iron-induced deregulation of miRNA expression in fallopian tube secretory epithelial cells (FTSECs).

Kidney cancer is one of the ten most common cancers worldwide with <15% survival rate at advanced stage (American Cancer Society). ccRCC is the most common type of kidney cancer and is described as a metabolic disease characterized by deregulated lipid metabolism leading to increased intracellular lipid droplets [9, 10]. The current molecular-targeted treatment strategies involve VEGF/VEGFR and mTOR inhibition [9, 12]. However, there are limitations to these approaches leading to the reduced efficacy and/or increased resistance in ccRCC cells [13, 14]. Therefore, it is important to decipher the factors involved in compromising the chemosensitivity in these cells.

Lysophosphatidic acid (LPA), a bioactive phospholipid, was previously reported to increase resistance against Sunitinib (VEGFR/PDGFR inhibitor) in ccRCC cells and to increase migration and invasion in various tumors [15-17]. In Chapter 3 of …


The Chelation Of Metal Ions By Vicibactin, A Siderophore Produced By Rhizobium Leguminosarum Atcc 14479, Joshua Stinnett May 2019

The Chelation Of Metal Ions By Vicibactin, A Siderophore Produced By Rhizobium Leguminosarum Atcc 14479, Joshua Stinnett

Undergraduate Honors Theses

Vicibactin is a small, high-affinity iron chelator produced by Rhizobium leguminosarum ATCC 14479. Previous work has shown that vicibactin is produced and secreted from the cell to sequester ferric iron from the environment during iron-deplete conditions. This ferric iron is then transported into the cell to be converted into ferrous iron. This study uses UV-Vis spectroscopy as well as ion trap-time of flight mass spectroscopy to determine that vicibactin does form a complex with copper(II) ions, however, at a much lower affinity than for iron(III). Stability tests have shown that the copper(II)-vicibactin complex is stable over time. The results of …


Iron Acquisition Strategies Employed By Staphylococcus Lugdunensis, Jeremy R. Brozyna Aug 2016

Iron Acquisition Strategies Employed By Staphylococcus Lugdunensis, Jeremy R. Brozyna

Electronic Thesis and Dissertation Repository

Iron is crucial for many cellular processes including DNA synthesis and respiration. The majority of iron in mammals is in heme within hemoproteins, inside cells, or transported through circulation by the glycoprotein transferrin, which constitutes the greatest iron source in serum. Limiting iron availability is an important facet of nutritional immunity to help prevent infection.

Staphylococcus lugdunensis is a human skin commensal and opportunistic pathogen capable of causing a variety of infections, including particularly aggressive endocarditis. It is an emerging pathogen with elevated virulence compared to other species of coagulase-negative staphylococci. The versatility of S. lugdunensis to infect multiple niches …


Sequence Analysis Of Maize Yellow Stripe3 Candidate Genes, Dennis B. Depaolo Nov 2014

Sequence Analysis Of Maize Yellow Stripe3 Candidate Genes, Dennis B. Depaolo

Masters Theses

The work presented here focuses on the molecular mechanism of phytosiderophore secretion in graminaceous plants. In maize, yellow stripe3 (ys3) is a mutant that is deficient in its ability to secrete iron-chelating compounds of the mugineic acid family known as phytosiderophores. Phytosiderophores are specific to grasses and are used for the acquisition of iron. Genetic linkage mapping of the ys3 locus lead to a region of interest on chromosome 3 defined by marker UMC1773. The sequence of eleven candidate genes (GRMZM2G390345, GRMZM2G390374, GRMZM2G342821, GRMZM5G800764, GRMZM2G502560, GRMZM5G849435, GRMZM2G105766, GRMZM5G876835, GRMZM2G036976, GRMZM2G502563, miR167g) revealed several small deletions …


The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil Jan 2013

The Role Of Cardiolipin In Iron Homeostasis And Glutathione Metabolism, Vinay A. Patil

Wayne State University Dissertations

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. The importance of CL in human health is underscored by the observation that perturbation of CL …


Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat Jan 2011

Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat

Wayne State University Dissertations

MOLECULAR DETAILS OF THE MITOCHONDRIAL IRON SULFUR CLUSTER ASSEMBLY PATHWAY

Iron-sulfur clusters are an important class of prosthetic group involved in electron transfer, enzyme catalysis, and regulation of gene expression. Their biosynthesis requires complex machinery located within the mitochondrion since free iron and sulfide are extremely toxic to the cell. Defects in this pathway results in several diseases such as Friedreich's Ataxia (FRDA), Sideroblastic Anemia and ISCU Myopathy. Therefore molecular details of the biogenesis pathway will provide deep insight in the pathway and treatment options for these diseases. FRDA is caused by deficiency of a single protein called as `Frataxin'. …