Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Leveraging Chemical And Computational Biology To Probe The Cellulose Synthase Complex, B. Kirtley Amos Jan 2021

Leveraging Chemical And Computational Biology To Probe The Cellulose Synthase Complex, B. Kirtley Amos

Theses and Dissertations--Plant and Soil Sciences

Cellular expansion in plants is a complex process driven by the constraint of internal cellular turgor pressure by an expansible cell wall. The main structural element of the cell wall is cellulose. Cellulose is vital to plant fitness and the protein complex that creates it is an excellent target for small molecule inhibition to create herbicides. In the following thesis many small molecules (SMs) from a diverse library were screened in search of new cellulose biosynthesis inhibitors (CBI). Loss of cellular expansion was the primary phenotype used to search for putative CBIs. As such, this was approached in a forward …


Epigenetic Implications In Inorganic Arsenic-Mediated Carcinogenesis, Meredith Eckstein Jan 2020

Epigenetic Implications In Inorganic Arsenic-Mediated Carcinogenesis, Meredith Eckstein

Theses and Dissertations--Molecular and Cellular Biochemistry

Chronic, low dose exposure to inorganic arsenic (iAs) is a public health concern throughout the world, contributing to the development of many diseases, including lung cancer. Several mechanisms for iAs-mediated carcinogenesis have been proposed, of which the production of reactive oxygen species and formation of chromosomal aberrations are the most studied. Another equally important, yet less studied mechanism is dysregulation of epigenetic marks. “Epigenetics” refers to changes that occur on the DNA and chromatin that do not alter base pair identity, but alter compaction, expression, and regulation of specific DNA sequences. There are several types of epigenetic marks including histone …


Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan Jan 2019

Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan

Theses and Dissertations--Toxicology and Cancer Biology

Genomic instability, in the form of gene mutations, insertions/deletions, and gene amplifications, is one of the hallmarks in many types of cancers and other inheritable genetic disorders. Trinucleotide repeat (TNR) disorders, such as Huntington’s disease (HD) and Myotonic dystrophy (DM) can be inherited and repeats may be extended through subsequent generations. However, it is not clear how the CAG repeats expand through generations in HD. Two possible repeat expansion mechanisms include: 1) polymerase mediated repeat extension; 2) persistent TNR hairpin structure formation persisting in the genome resulting in expansion after subsequent cell division. Recent in vitro studies suggested that a …


Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares Jan 2018

Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a type of plant defense mechanism that is induced after a localized infection and confers broad-spectrum immunity against related or unrelated pathogens. During SAR, a number of chemical signals and proteins generated at the site of primary infection travel to the uninfected tissues and are thought to alert the distal sites against secondary infections. Glycerol-3-phosphate (G3P) is one of the chemical signals that play an important role in SAR. G3P is synthesized in the cytosol and chloroplasts via the enzymatic activities of G3P Dehydrogenase (G3Pdh) or Glycerol Kinase (GK). Interestingly, a mutation in three of …


Use Of Genomic Tools To Discover The Cause Of Champagne Dilution Coat Color In Horses And To Map The Genetic Cause Of Extreme Lordosis In American Saddlebred Horses, Deborah G. Cook Jan 2014

Use Of Genomic Tools To Discover The Cause Of Champagne Dilution Coat Color In Horses And To Map The Genetic Cause Of Extreme Lordosis In American Saddlebred Horses, Deborah G. Cook

Theses and Dissertations--Veterinary Science

Champagne dilution of coat color in horses is caused by dominant gene action. Three sire families were identified as segregating for this trait. Genome wide linkage analysis using 104 microsatellite DNA markers was used to map the gene to ECA14 (LOD > 11.0). Four genes, namely SPARC, SLC36A1, SLC36A2 and SLC36A3, were selected from the region implicated by linkage and their exons sequenced. DNA sequences were compared for two homozygotes for Champagne dilution, two heterozygotes and two horses without dilution. A single base change in exon 2 of SLC36A1 was found unique to horses exhibiting Champagne dilution. This change in base …


Circadian And Homeostatic Regulation Of Sleep In Cast/Eij And C57bl/6j Mice, Peng Jiang Jan 2011

Circadian And Homeostatic Regulation Of Sleep In Cast/Eij And C57bl/6j Mice, Peng Jiang

University of Kentucky Doctoral Dissertations

Sleep is essential for mammals and possibly for all animals. Advancing our knowledge of sleep regulation is crucial for the development of interventions in sleep-related health and social problems. With this aim, this study utilizes laboratory mice to explore sleep regulatory mechanisms at behavioral, molecular, and genetic levels.

Sleep is regulated by the interaction of circadian and homeostatic processes. The circadian clock facilitates sleep to occur at a favorable time of the day. Normal mice, such as the C57BL/6J (B6) strain, sleep mostly during the day and initiate activities at dark onset. Here, I show mice of the CAST/EiJ (CAST) …


Dissecting The Biosyntheses Of Gilvocarcins And Ravidomycins, Madan Kumar Kharel Jan 2010

Dissecting The Biosyntheses Of Gilvocarcins And Ravidomycins, Madan Kumar Kharel

University of Kentucky Doctoral Dissertations

Gilvocarcin V (GV) and ravidomycin (RMV) exhibit excellent antitumor activities in the presence of near-UV light at low concentration maintaining a low in vivo cytotoxicity. Although, the exact molecular mechanism for in vivo actions of these antibiotics has yet to be determined, a [2+2] cycloaddition reaction of the vinyl side chain with DNA thymidine residues in addition to the inhibition of topoisomerase II and DNAhistone H3 cross-linking are reported for the GV’s mechanism of action. Such activities have made these molecules interesting candidates for the biosynthetic investigation to generate analogues with improved activity/solubility. Previous biosynthetic studies have suggested that the …