Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 151 - 180 of 853

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Human 5’-Tailed Mirtrons Are Processed By Rnasep, Mohammad Farid Zia Oct 2021

Human 5’-Tailed Mirtrons Are Processed By Rnasep, Mohammad Farid Zia

Dissertations

Approximately a thousand microRNAs (miRNAs) are documented from human cells. A third appear to transit non-canonical pathways that typically bypass processing by Drosha, the dedicated nuclear miRNA producing enzyme. The largest class of non-canonical miRNAs are mirtrons which eschew Drosha to mature through spliceosome activity. While mirtrons are found in several configurations, the vast majority of human mirtron species are 5’-tailed. For these mirtrons, a 3’ splice site defines the 3’ end of their hairpin precursor while a “tail” of variable length separates the 5’ base of the hairpin from the nearest splice site. How this tail is removed is …


Recent Applications Of Quantitative Systems Pharmacology And Machine Learning Models Across Diseases, Sara Sadat Aghamiri1, Rada Amin, Tomáš Helikar Oct 2021

Recent Applications Of Quantitative Systems Pharmacology And Machine Learning Models Across Diseases, Sara Sadat Aghamiri1, Rada Amin, Tomáš Helikar

Department of Biochemistry: Faculty Publications

Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019–2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review …


A Study Of The Mammalian High Mobility Group Protein At-Hook 2 (Hmga2) And Its Interactions With Dna, Linjia Su Oct 2021

A Study Of The Mammalian High Mobility Group Protein At-Hook 2 (Hmga2) And Its Interactions With Dna, Linjia Su

FIU Electronic Theses and Dissertations

The mammalian high-mobility-group protein AT-hook 2 (HMGA2) is a small DNA-binding protein and consists of three positively charged “AT-hooks” and a negatively charged C-terminal motif. It is a multifunctional nuclear protein linked to obesity, human height, stem cell youth, human intelligence, and tumorigenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti‐obesity drugs through inhibiting its DNA‐binding activities. Here a miniaturized, automated AlphaScreen ultra‐high‐throughput screening assay is developed to identify inhibitors targeting HMGA2‐DNA interactions. After screening the LOPAC1280 library, several compounds are identified that strongly inhibit HMGA2‐DNA interactions including suramin, a negatively charged antiparasitic drug. …


The Novel Orfv Protein Orfv113 Activates Lpa-P38 Signaling, Sushil Khatiwad, Gustavo Delho, Sabal Chaulagai, Daniel L. Rock Oct 2021

The Novel Orfv Protein Orfv113 Activates Lpa-P38 Signaling, Sushil Khatiwad, Gustavo Delho, Sabal Chaulagai, Daniel L. Rock

School of Veterinary and Biomedical Sciences: Faculty Publications

Viruses have evolved mechanisms to subvert critical cellular signaling pathways that regulate a wide range of cellular functions, including cell differentiation, proliferation and chemotaxis, and innate immune responses. Here, we describe a novel ORFV protein, ORFV113, that interacts with the G protein-coupled receptor Lysophosphatidic acid receptor 1 (LPA1). Consistent with its interaction with LPA1, ORFV113 enhances p38 kinase phosphorylation in ORFV infected cells in vitro and in vivo, and in cells transiently expressing ORFV113 or treated with soluble ORFV113. Infection of cells with virus lacking ORFV113 (OVIA82Δ113) significantly decreased p38 phosphorylation and viral plaque size. …


A Bioinformatic And Biochemical Analysis Of Cruciviruses, George William Kasun Oct 2021

A Bioinformatic And Biochemical Analysis Of Cruciviruses, George William Kasun

Dissertations and Theses

Cruciviruses are novel ssDNA viruses discovered through metagenomics and direct environmental DNA amplification and cloning. The genomes of cruciviruses suggest that gene transfer between RNA and DNA viruses occurred due to the presence of putative protein-encoding genes that are homologous to both ssRNA and ssDNA viruses. In order to gain a better understanding of this group of viruses both bioinformatic analyses and in vitro biochemical experiments were employed. The results of the bioinformatic analyses show that cruciviruses are a highly diverse group of ssDNA viruses. Their placement within established ssDNA phylogenies is difficult due to heterogeneity in their putative replication-associated …


Purification And Initial Biochemical Characterization Of Atp:Cob(I)Alamin Adenosyltransferase (Eutt) Enzyme Of Salmonella Enterica, Nicole R. Buan, Jorge C. Escalante-Semerena Oct 2021

Purification And Initial Biochemical Characterization Of Atp:Cob(I)Alamin Adenosyltransferase (Eutt) Enzyme Of Salmonella Enterica, Nicole R. Buan, Jorge C. Escalante-Semerena

Department of Biochemistry: Faculty Publications

ATP:cob(I)alamin adenosyltransferase (EutT) of Salmonella enterica was overproduced and enriched to ~70% homogeneity, and its basic kinetic parameters were determined. Abundant amounts of EutT protein were produced, but all of it remained insoluble. Soluble active EutT protein (~70% homogeneous) was obtained after treatment with detergent. Under conditions in which cobalamin (Cbl) was saturating, Km(ATP) = 10 μM, kcat = 0.03 s1, and Vmax = 54.5 nM min1. Similarly, under conditions in which MgATPwas saturating,Km(Cbl)= 4.1μM, kcat = 0.06 s1, andVmax …


Environmental Studies Of Cyanobacterial Harmful Algal Blooms Should Include Interactions With The Dynamic Microbiome, Helena L. Pound, Robbie M. Martin, Cody S. Sheik, Morgan M. Steffen, Silvia E. Newell, Gregory J. Dick, R. Michael L. Mckay, George S. Bullerjahn, Steven W. Wilhelm Oct 2021

Environmental Studies Of Cyanobacterial Harmful Algal Blooms Should Include Interactions With The Dynamic Microbiome, Helena L. Pound, Robbie M. Martin, Cody S. Sheik, Morgan M. Steffen, Silvia E. Newell, Gregory J. Dick, R. Michael L. Mckay, George S. Bullerjahn, Steven W. Wilhelm

Great Lakes Institute for Environmental Research Publications

No abstract provided.


The Simulation Experiment Description Markup Language (Sed-Ml): Language Specification For Level 1 Version 4, Lucian P. Smith,, Frank T. Bergmann, Alan Garny, Tomáš Helikar, Jonathan Karr, David Nickerson,, Herbert Sauro, Dagmar Waltemath, Matthias König Oct 2021

The Simulation Experiment Description Markup Language (Sed-Ml): Language Specification For Level 1 Version 4, Lucian P. Smith,, Frank T. Bergmann, Alan Garny, Tomáš Helikar, Jonathan Karr, David Nickerson,, Herbert Sauro, Dagmar Waltemath, Matthias König

Department of Biochemistry: Faculty Publications

Computational simulation experiments increasingly inform modern biological research, and bring with them the need to provide ways to annotate, archive, share and reproduce the experiments performed. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. The first versions of SED-ML focused on deterministic and stochastic simulations of models. Level 1 Version 4 of SED-ML substantially expands these …


Liquid And Semisolid Lubricant Compositions , Methods Of Making , And Uses Thereof, Diana Berman, Kent Dean Chapman, Tervor Bradley Romsdahl, Edgar Benjamin Cahoon, Robert Earl Minto, Chunyu Zhang Oct 2021

Liquid And Semisolid Lubricant Compositions , Methods Of Making , And Uses Thereof, Diana Berman, Kent Dean Chapman, Tervor Bradley Romsdahl, Edgar Benjamin Cahoon, Robert Earl Minto, Chunyu Zhang

Department of Biochemistry: Faculty Publications

Various liquid and semisolid lubricant compositions are provided, in particular lubricant compositions containing oil from the seeds of the Brassicaceae Orychophragmus violaceus, preferably those that have been esterified with one or more fatty acids such as palmitoleic acid, oleic acid, linoleic acid, lauric acid, palmitic acid, stearic acid, or a combination thereof. In various aspects, lubricant compositions are provided that include a petroleum or a synthetic base oil and about 40 % or less by weight of a liquid lubricant composition containing oil from the seeds of the Brassicaceae Orychophragmus violaceus preferably those that have been esterified with one …


Exogenous Surfactant As A Delivery Vehicle For Intrapulmonary Therapeutics, Brandon J. Baer Oct 2021

Exogenous Surfactant As A Delivery Vehicle For Intrapulmonary Therapeutics, Brandon J. Baer

Electronic Thesis and Dissertation Repository

As an organ system, the lung has unique advantages and disadvantages for direct drug delivery. Its contact with the external environment allows for the airways to be easily accessible to intrapulmonary delivery. However, its complex structure, which divides into more narrow airways with each branch, can make direct delivery to the remote alveoli challenging. The objective of this thesis was to overcome this issue by using exogenous surfactant, a lipoprotein complex used to treat neonatal respiratory distress syndrome, as a carrier for pulmonary therapeutics. It was hypothesized that therapeutics administered with a surfactant vehicle would display enhanced delivery to the …


Oxidative Dna Damage Modulates Genome And Epigenome Integrity Via Base Excision Repair, Pawlos S. Tsegay Oct 2021

Oxidative Dna Damage Modulates Genome And Epigenome Integrity Via Base Excision Repair, Pawlos S. Tsegay

FIU Electronic Theses and Dissertations

Oxidative DNA damage is one of the leading causes of genome instability, cell death, and diseases. It is repaired by DNA base excision repair (BER), during which repair and translesion DNA polymerases may incorporate damaged nucleotides and mediate RNA-guided DNA repair induced by DNA replication and gene transcription leading to the modulation of genome stability. On the other hand, oxidative DNA damage may result in cellular epigenetic responses to regulate DNA repair, altering genome stability and integrity. In this dissertation, we revealed the molecular mechanisms underlying the misincorporation of oxidized nucleotides, 5′,8-cyclo-2-cyclodeoxyadenosine (cdA) and RNA-guided base lesion repair mediated by …


Converging Technologies: Targeting The Hallmarks Of Cancer Using Ultrasound And Microbubbles, Janith Wanigasekara, Andressa Maria Aguiar De Carvalho, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin Oct 2021

Converging Technologies: Targeting The Hallmarks Of Cancer Using Ultrasound And Microbubbles, Janith Wanigasekara, Andressa Maria Aguiar De Carvalho, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin

Articles

Various complex biological effects occur when ultrasonic compression waves travel through biological material. The myriad of biological outcomes instigated by ultrasound are evident when viewed through the lens of the hallmarks of cancer. Herein, we summarise the therapeutic potential of ultrasound, enhanced by microbubbles, for the treatment of cancer.


Hiv-1 Transcription Elongation By Tat-Mediated Recruitment Of P-Tefb, Elizabeth Griggs Oct 2021

Hiv-1 Transcription Elongation By Tat-Mediated Recruitment Of P-Tefb, Elizabeth Griggs

Honors Theses

Over 38.0 million people live with the human immunodeficiency virus (HIV) as of 462019. HIV hijacks the host's cellular machinery to replicate its viral DNA and transcribe the corresponding RNA. HIV-1 transcription relies on both cellular and viral transcription factors for proper regulation. The viral transcriptional activator Tat is a primary regulator. Transcription activation and elongation is controlled through the interaction of Tat with Positive Transcription Elongation Factor b (P-TEFb), a cellular transcriptional activator. The focus of this paper is 1) an in-depth understanding of the interaction between P-TEFb and Tat in HIV transcription, and 2) a review of recent …


Analysis Of Single-Site Cysteine Mutation, I412c, In Human A Glycine Receptor States To Further Refine Structure And Allostery, Leah Engquist Oct 2021

Analysis Of Single-Site Cysteine Mutation, I412c, In Human A Glycine Receptor States To Further Refine Structure And Allostery, Leah Engquist

Honors Theses

The glycine receptor (GlyR) is the major inhibitory receptor in the brain and spinal cord. A member of the pentameric ligand gated ion channel superfamily, crystal structures are available but there are still unresolved areas, specifically the C-terminal tail and TM3-TM4 intracellular loop. Further refinement can provide deeper understanding of the molecular mechanism and allow the creation of novel therapeutics to modulate its function. We propose to insert a single cysteine mutation, I412C, into a Cys null background (C41S/C290A/C345S) to study non- conducting states (resting, desensitized) or with F207G/A288G mutations to study the open state. Purified, reconstituted GlyR is crosslinked …


Mitochondrial Contact Site And Cristae Organizing System (Micos) Machinery Supports Heme Biosynthesis By Enabling Optimal Performance Of Ferrochelatase, Jonathan V. Dietz, Mathilda M. Willoughby, Robert B. Piel, Teresa A. Ross, Iryna Bohovych, Hannah G. Addis, Jennifer L. Fox, William N. Lanzilotta, Harry A. Dailey, James A. Wohlschlegel, Amit R. Reddi, Amy E. Medlock, Oleh Khalimonchuk Oct 2021

Mitochondrial Contact Site And Cristae Organizing System (Micos) Machinery Supports Heme Biosynthesis By Enabling Optimal Performance Of Ferrochelatase, Jonathan V. Dietz, Mathilda M. Willoughby, Robert B. Piel, Teresa A. Ross, Iryna Bohovych, Hannah G. Addis, Jennifer L. Fox, William N. Lanzilotta, Harry A. Dailey, James A. Wohlschlegel, Amit R. Reddi, Amy E. Medlock, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and …


Determining The Primary Dna Substrates Of Shld2'S Ob-Fold Domains, Hari Patchigolla Oct 2021

Determining The Primary Dna Substrates Of Shld2'S Ob-Fold Domains, Hari Patchigolla

Holster Scholar Projects

Failure to repair DNA double-stranded breaks leads to cell death. Radiation therapy is commonly used to kill cancer cells by inducing these breaks. However resistance to radiation therapy, due to a hyperactive DNA double-stranded break repair pathway, is a common occurrence that makes cancer patients more prone to relapse. The Shieldin complex is shown to promote DNA-double stranded break repair by binding to DNA at sites of damage. Thus, the objective of this project is to understand the affinity and type of DNA that Shieldin binds to, through gel-shift assays, for the eventual creation of an inhibitor for this protein …


Shift In Conformational Equilibrium Underlies The Oscillatory Phosphoryl Transfer Reaction In The Circadian Clock, Pyonghwa Kim, Neha Thati, Shreya Peshori, Hye-In Jang, Yongick Kim Oct 2021

Shift In Conformational Equilibrium Underlies The Oscillatory Phosphoryl Transfer Reaction In The Circadian Clock, Pyonghwa Kim, Neha Thati, Shreya Peshori, Hye-In Jang, Yongick Kim

Chemistry Faculty Research

Oscillatory phosphorylation/dephosphorylation can be commonly found in a biological system as a means of signal transduction though its pivotal presence in the workings of circadian clocks has drawn significant interest: for example in a significant portion of the physiology of Synechococcus elongatus PCC 7942. The biological oscillatory reaction in the cyanobacterial circadian clock can be visualized through its reconstitution in a test tube by mixing three proteins—KaiA, KaiB and KaiC—with adenosine triphosphate and magnesium ions. Surprisingly, the oscillatory phosphorylation/dephosphorylation of the hexameric KaiC takes place spontaneously and almost indefinitely in a test tube as long as ATP is present. This …


College Of Natural Sciences Newsletter, October 2021, College Of Natural Sciences Oct 2021

College Of Natural Sciences Newsletter, October 2021, College Of Natural Sciences

College of Natural Sciences Newsletters and Reports

Volume 2, Issue 10

Page 1 Dean's Message
Page 2 Awards and Recognition; Introducing Natural Sciences Student Ambassadors
Page 3 Media Coverage of CNS
Page 4 Spooky Science Outreach
Page 5 The BIG Event Outreach
Page 6 Geography Club Road Trip
Page 7 Aamlid Family Anatomy Lab
Page 8 Hobo Day Recap
Page 10 Open PRAIRIE Data; Grants Awarded in CNS


Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde Oct 2021

Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde

Biology Faculty Publications

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and …


Alterations To The Brain Following Traumatic Brain Injury, Jacqueline Mader Oct 2021

Alterations To The Brain Following Traumatic Brain Injury, Jacqueline Mader

Honors Projects

Traumatic brain injuries (TBIs) have been labeled as a modern-day epidemic, increasing exponentially with the advancement of technology and society. Gaining a better understanding of the cognitive paths, including the chemical and electrical signals of the brain, neural correlates, and possible interventions for TBI patients allows for the best possible outcome for every patient, and allows for the further advancement of care. By revising and reassessing the ways in which TBIs are categorized and described the prognosis for recovery paints a more realistic view for each individual patient case. The symptoms and impairments that may occur post-injury can be monitored …


Effects Of Exogenous Application Of Plant Growth Regulators (Snp And Ga3) On Phytoextraction By Switchgrass (Panicum Virgatum L.) Grown In Lead (Pb) Contaminated Soil, Adrianne Beavers, Marina Koether, Thomas C. Mcelroy, Sigurdur Greipsson Oct 2021

Effects Of Exogenous Application Of Plant Growth Regulators (Snp And Ga3) On Phytoextraction By Switchgrass (Panicum Virgatum L.) Grown In Lead (Pb) Contaminated Soil, Adrianne Beavers, Marina Koether, Thomas C. Mcelroy, Sigurdur Greipsson

Faculty and Research Publications

Soil lead (Pb) contamination is a major environmental and public health risk. Switch-grass (Panicum virgatum), a second-generation biofuel crop, is potentially useful for the long-term phytoremediation and phytoextraction of Pb contaminated soils. We evaluated the efficacy of a coor-dinated foliar application of plant growth regulators and soil fungicide and a chelator in order to optimize phytoextraction. Plants were grown in soil culture under controlled conditions. First, three exogenous nitric oxide (NO) donors were evaluated at multiple concentrations: (1) S-nitroso-N-acetylpenicillamine (SNAP); (2) sodium nitroprusside (SNP); and (3) S-nitrosoglutathione (GSNO). Second, the effect of SNP (0.5 µM) was examined further with the …


Regulation Of The Ribosome Biogenesis Factor Hyvh1 By Src-Mediated Phosphorylation, Ashley Anne Dadalt Oct 2021

Regulation Of The Ribosome Biogenesis Factor Hyvh1 By Src-Mediated Phosphorylation, Ashley Anne Dadalt

Electronic Theses and Dissertations

The protein tyrosine phosphatase (PTP) superfamily is a major segment of the signal transduction landscape, responsible for regulating the biomolecular phosphorylation status of the cell. Diverse PTP subclasses exist, some of which are understudied and whose cellular functions are not yet fully elucidated. YVH1, an atypical PTP of the dual-specificity phosphatase (DUSP) subclass, is a pleiotropic enzyme with no known substrate. Human YVH1 (hYVH1) protects cells from cellular stressors, including heat shock and oxidative stress, regulates the cell cycle, disassembles stress granules, and acts as 60S ribosome biogenesis factor. Additionally, heat shock protein 70 (Hsp70) has been found to be …


Hla Blockers For Potentially Treating Rheumatoid Arthritis, Samaneh Mehri Oct 2021

Hla Blockers For Potentially Treating Rheumatoid Arthritis, Samaneh Mehri

Electronic Theses and Dissertations

Autoimmune diseases occurs when the immune system recognize self antigens in the body as foreign invaders leads to dysfunction of tissue. RA is an autoimmune disease, caused by improper recognition of self-peptides, particularly human cartilage glycoprotein and type II collagen, by specific human leukocyte antigen (HLA) receptors. Normally T-cell specific for these peptides are destroyed in the thymus before they are released, preventing autoimmunity. However, certain post-translational modifications, especially citrullination, can lead to “self-peptide” recognition by non-self T cells: in the case of RA, one HLA protein (DRB*0401), out of about 1700 possible ones, is responsible for 65% of RA …


A Conserved Structural Role For The Walker-A Lysine In P-Loop Containing Kinases, Fatlum Hajredini, Ranajeet Ghose Oct 2021

A Conserved Structural Role For The Walker-A Lysine In P-Loop Containing Kinases, Fatlum Hajredini, Ranajeet Ghose

Publications and Research

Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved “catalytic” lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg2+•ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by …


Covid-19 In Silico Drug With Zingiber Officinale Natural Product Compound Library Targeting The Mpro Protein, Renadya Maulani Wijaya, Muhammad Aldino Hafidzhah, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Arli Aditya Parikesit Sep 2021

Covid-19 In Silico Drug With Zingiber Officinale Natural Product Compound Library Targeting The Mpro Protein, Renadya Maulani Wijaya, Muhammad Aldino Hafidzhah, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Arli Aditya Parikesit

Makara Journal of Science

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic. Ginger (Zingiber officinale) is a rhizome, which is commonly used for culinary and medicinal purposes. In Indonesia, ginger is taken as traditional medicine by processing it into a drink known as jamu. The present study aimed to assess and evaluate the bioactive compounds in ginger that can be used in drug design for treating COVID-19. The crystal structure of the SARS-CoV-2 main protease (Mpro) was generated from a protein sequence database, i.e., Protein Data Bank, …


Fe-Catalyzed Sulfide Oxidation In Hydrothermal Plumes Is A Source Of Reactive Oxygen Species To The Ocean, Timothy J. Shaw, George W. Luther Iii, Richard Rosas, Véronique E. Oldham, Nicole R. Coffey, John L. Ferry, Dewamunnage M. C. Dias, Mustafa Yücel, Aubin Thibault De Chanvalon Sep 2021

Fe-Catalyzed Sulfide Oxidation In Hydrothermal Plumes Is A Source Of Reactive Oxygen Species To The Ocean, Timothy J. Shaw, George W. Luther Iii, Richard Rosas, Véronique E. Oldham, Nicole R. Coffey, John L. Ferry, Dewamunnage M. C. Dias, Mustafa Yücel, Aubin Thibault De Chanvalon

Faculty Publications

Historically, the production of reactive oxygen species (ROS) in the ocean has been attributed to photochemical and biochemical reactions. However, hydrothermal vents emit globally significant inventories of reduced Fe and S species that should react rapidly with oxygen in bottom water and serve as a heretofore unmeasured source of ROS. Here, we show that the Fe-catalyzed oxidation of reduced sulfur species in hydrothermal vent plumes in the deep oceans supported the abiotic formation of ROS at concentrations 20 to 100 times higher than the average for photoproduced ROS in surface waters. ROS (measured as hydrogen peroxide) were determined in hydrothermal …


Development Of 3d Bioartificial Human Tissue Models Of Periprosthetic Shoulder Joint Infection, Tony B. Huang Sep 2021

Development Of 3d Bioartificial Human Tissue Models Of Periprosthetic Shoulder Joint Infection, Tony B. Huang

Electronic Thesis and Dissertation Repository

Periprosthetic joint infection (PJI) is a devastating and costly post-surgical complication that is not well understood due to the scarcity of physiologically representative experimental models. This thesis outlines the development of two 3D bioartificial human tissue models designed to study the cellular and biochemical interactions between primary fibroblasts from the shoulder capsule (SC) and infectious microorganisms. Using the Fibroblast-Bacteria Co-culture in 3D Collagen model, we demonstrated a global gene repression of metabolic and homeostatic processes in SC fibroblasts following 48 hours of co-culture with Cutibacterium acnes – the most common microbial cause of PJI in the shoulder. These cellular changes …


Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham Sep 2021

Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not …


Cellular And Molecular Alterations Associated With Ovarian And Renal Cancer Pathophysiology, Ravneet Kaur Chhabra Sep 2021

Cellular And Molecular Alterations Associated With Ovarian And Renal Cancer Pathophysiology, Ravneet Kaur Chhabra

USF Tampa Graduate Theses and Dissertations

Elucidating molecular alterations underlying tumor development and chemoresistance are critical to expand our understanding of the disease pathophysiology. This dissertation is focused on analyzing the cellular and molecular alterations associated with LPA-induced chemoresistance in clear cell renal cell carcinoma (ccRCC) cells and chronic iron-induced deregulation of miRNA expression in fallopian tube secretory epithelial cells (FTSECs).

Kidney cancer is one of the ten most common cancers worldwide with <15% survival rate at advanced stage (American Cancer Society). ccRCC is the most common type of kidney cancer and is described as a metabolic disease characterized by deregulated lipid metabolism leading to increased intracellular lipid droplets [9, 10]. The current molecular-targeted treatment strategies involve VEGF/VEGFR and mTOR inhibition [9, 12]. However, there are limitations to these approaches leading to the reduced efficacy and/or increased resistance in ccRCC cells [13, 14]. Therefore, it is important to decipher the factors involved in compromising the chemosensitivity in these cells.

Lysophosphatidic acid (LPA), a bioactive phospholipid, was previously reported to increase resistance against Sunitinib (VEGFR/PDGFR inhibitor) in ccRCC cells and to increase migration and invasion in various tumors [15-17]. In Chapter 3 of …


Snow Buntings Maintain Winter-Level Cold Endurance While Migrating To The High Arctic, Audrey Le Pogam, Ryan S. O’Connor, Oliver P. Love, Justine Drolet, Lyette Régimbald, Gabrielle Roy, Marie Pier Laplante, Dominique Berteaux, Andrew Tam, François Vézina Sep 2021

Snow Buntings Maintain Winter-Level Cold Endurance While Migrating To The High Arctic, Audrey Le Pogam, Ryan S. O’Connor, Oliver P. Love, Justine Drolet, Lyette Régimbald, Gabrielle Roy, Marie Pier Laplante, Dominique Berteaux, Andrew Tam, François Vézina

Great Lakes Institute for Environmental Research Publications

Arctic breeding songbirds migrate early in the spring and can face winter environments requiring cold endurance throughout their journey. One such species, the snow bunting (Plectrophenax nivalis), is known for its significant thermogenic capacity. Empirical studies suggest that buntings can indeed maintain winter cold acclimatization into the migratory and breeding phenotypes when kept captive on their wintering grounds. This capacity could be advantageous not only for migrating in a cold environment, but also for facing unpredictable Arctic weather on arrival and during preparation for breeding. However, migration also typically leads to declines in the sizes of several body components linked …