Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Biochemistry

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 30

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon Dec 2021

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon

Theses & Dissertations

A myriad of genetic and other abnormal changes underlies the aggressiveness and dissemination properties observed in pancreatic cancer (PC). Aberrant protein glycosylation is a commonly observed feature in PC. The modification of protein O-glycosylation is mediated by glycosyltransferases, which attach and sequentially elongate monosaccharides on Serine/Threonine (Ser/Thr) motifs. Aberrant glycosylation is recognized as an emerging hallmark of cancer where a disruption in normal glycosylation results in irregular O-glycans.

This dissertation research has investigated the consequences of aberrant protein glycosylation on stemness and enhancement of metastatic properties in pancreatic ductal adenocarcinoma (PDAC). Several publications have reported aberrant O-glycosylation increases in oncogenic …


Mechanistic Insights Into Diverse Protease Adaptor Functions, Nathan J. Kuhlmann Oct 2021

Mechanistic Insights Into Diverse Protease Adaptor Functions, Nathan J. Kuhlmann

Doctoral Dissertations

Protein degradation is an essential cellular process that helps maintain proper homeostasis. The ClpXP protease broadly regulates bacterial development and quality control during the cell cycle. The range and order of substrates that ClpXP degrades during the cell cycle is dictated by 3 accessory proteins, which are known as adaptors. This thesis will elaborate on how dimerization tightly regulates the stability and activity of the adaptor protein at the center of this hierarchy, RcdA, and show how this affects normal cellular processes in Caulobacter crescentus. I will discuss the mechanism by which dimerization limits RcdA activity and how the dimerization …


Analysis Of Single-Site Cysteine Mutation, I412c, In Human A Glycine Receptor States To Further Refine Structure And Allostery, Leah Engquist Oct 2021

Analysis Of Single-Site Cysteine Mutation, I412c, In Human A Glycine Receptor States To Further Refine Structure And Allostery, Leah Engquist

Honors Theses

The glycine receptor (GlyR) is the major inhibitory receptor in the brain and spinal cord. A member of the pentameric ligand gated ion channel superfamily, crystal structures are available but there are still unresolved areas, specifically the C-terminal tail and TM3-TM4 intracellular loop. Further refinement can provide deeper understanding of the molecular mechanism and allow the creation of novel therapeutics to modulate its function. We propose to insert a single cysteine mutation, I412C, into a Cys null background (C41S/C290A/C345S) to study non- conducting states (resting, desensitized) or with F207G/A288G mutations to study the open state. Purified, reconstituted GlyR is crosslinked …


High Altitude Ballooning As A Platform For Measuring Ozone Uptake Over Agricultural Landscapes, Thomas Sykora, Mark Potosnak Aug 2021

High Altitude Ballooning As A Platform For Measuring Ozone Uptake Over Agricultural Landscapes, Thomas Sykora, Mark Potosnak

DePaul Discoveries

Measuring plant health is a key aspect in maximizing crop outputs. One often overlooked risk to crop fields is damage caused by stomatal ozone uptake; measuring this uptake is an important tool in understanding crop losses. Traditional methods for measuring plant ozone uptake are prohibitively expensive and rely on equipment that cannot easily be moved. Here, we propose high-altitude weather ballooning as a cost-effective alternative for measuring ozone uptake on a regional (~10 km) spatial scale. Ozonesounde data was obtained with weather balloons launched from the National Oceanic and Atmospheric Administration research station in Boulder, Colorado. This data was then …


Mucinomics: A Bioinformatic Analysis Of Snail Mucins, And Their Function, Maxwell B. Mcdermott Aug 2021

Mucinomics: A Bioinformatic Analysis Of Snail Mucins, And Their Function, Maxwell B. Mcdermott

Theses and Dissertations

This thesis outlines the current research on secreted snail mucus, highlighting the potential of this biopolymer, and also demonstrates a research strategy to fulfill the unmet need of examining the hierarchical structures that lead to the enormous biological and chemical diversity of snail mucus genes.


Application Of Artificial Intelligence And Machine Learning In Chemistry, Niraj Verma Aug 2021

Application Of Artificial Intelligence And Machine Learning In Chemistry, Niraj Verma

Chemistry Theses and Dissertations

In the last four years, I have been exposed to various topics in scientific research under the supervision of Dr. Kraka in the CATCO group. Numerous involved chemistry projects were undertaken to gain an understanding of the basic laws of nature involving vibrational spectroscopy, molecular acidity, and catalysts based on transition metals for halogen chemistry. The insights from computational chemistry were then applied to model and predict various complicated problems in chemistry via artificial intelligence. With the help of classical artificial intelligence, the non-covalent interactions governing the properties of proteins and water properties were analyzed. Significant improvements were made in …


Determination Of The Structure, Function, And Mechanism Of Type Iv Crispr-Cas Prokaryotic Defense Systems, Hannah Nicole Taylor Aug 2021

Determination Of The Structure, Function, And Mechanism Of Type Iv Crispr-Cas Prokaryotic Defense Systems, Hannah Nicole Taylor

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Bacteria are under constant threat of invasion by bacteriophage (viruses which infect bacteria). To prevent bacteriophage from entering and overtaking the bacteria, bacteria utilize defense systems to identify and destroy foreign elements. One method of defense is called CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats – CRISPR-Associated). Many different bacteria and most archaea use CRISPR-Cas systems. There are many diverse types of CRISPR-Cas systems, each of which provides defense in a slightly different way. One such CRISPR-Cas type is called type IV. The type IV CRISPR-Cas system is poorly understood and there are very few studies published on type IV …


Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike Aug 2021

Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike

Department of Biochemistry: Dissertations, Theses, and Student Research

Plant oils are an important source of food, fuel, and feed in our society today. The oil found in the seeds of plants is composed almost entirely of triacylglycerol (TAG) molecules, which consist of three fatty acids esterified to a glycerol backbone. As crude oil supplies decline, vegetable oils are gaining traction as a renewable substitute to petroleum-based materials in fuels, lubricants, and specialty oleochemicals. However, as it currently stands vegetable oils do not possess the properties necessary to fill the void of a petroleum free world.

To address this problem, plant biotechnologists have done extensive work on genetic engineering …


Ahr Expression On Rorc-Expressing Immune Cells Is Essential For I3c-Mediated Protection Against Colitis, Michal C. Williams Jul 2021

Ahr Expression On Rorc-Expressing Immune Cells Is Essential For I3c-Mediated Protection Against Colitis, Michal C. Williams

Senior Theses

Colitis is an inflammatory bowel disorder (IBD) whose etiology is attributed to modification in the luminal microbiota and dysregulation in the immune response. Indole is a signaling molecule which is naturally produced by gut luminal microbiota. Indole-3- carbinol (I3C) is a compound commonly found in vegetables and a ligand for the aryl hydrocarbon receptor (AhR). Previous studies have detected decreased expression and activation on the AhR receptor in colitis patients, thought to possibly alter gut microbiota metabolism, subsequently promoting colitis. 1 AhR, expressed in a variety of immune and epithelial cells, contributes to gut homeostasis by affecting vital mediators such …


High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon Jun 2021

High And Low Toxin Producing Strains Of Karenia Brevis Differ Significantly In The Redox Proteome, Lipid Profiles, And Xanthophyll Cycle Pigments, Ricardo Colon

FIU Electronic Theses and Dissertations

The dinoflagellate Karenia brevis, blooms annually in the Gulf of Mexico, producing a suite of neurotoxins known as the brevetoxins. The cellular toxin content of K. brevis, however, is highly variable between or even within strains. I investigated biochemical differences between high (KbHT) and low (KbLT) toxin producing cultures both derived from the Wilson strain, related to energy-dependent quenching (qE) by photosystem II, and the content of reduced thiols of the proteome. By characterizing the xanthophyll content of the two strains I was able to determine that KbLT performs qE inconsistently. To investigate the …


Investigating The Mechanism Of The Escherichia Coli Atp-Binding Cassette (Abc) Transporter Metni, Matthew Foronda May 2021

Investigating The Mechanism Of The Escherichia Coli Atp-Binding Cassette (Abc) Transporter Metni, Matthew Foronda

Master's Theses

Chemical homeostasis is a baseline requirement for any cell to survive. ATP-binding cassette (ABC) transporters play a vital role in homeostasis by importing nutrients and exporting toxins against their concentration gradients by utilizing the energy of ATP hydrolysis. Malfunctioning ABC transporters cause a variety of health problems, including cystic fibrosis, Stargardt’s disease (vision loss), and the development of drug-resistant tumors. An important step in solving these medical issues is to first understand the structure and mechanism of ABC transporters. Various studies have made great strides in depicting the structure and details of different ABC transporters and their mechanisms, however, many …


Dynamic Mechanisms Of Multidrug Resistance In Human Cancers And Gram Negative Pathogens, Lauren Ammerman May 2021

Dynamic Mechanisms Of Multidrug Resistance In Human Cancers And Gram Negative Pathogens, Lauren Ammerman

Biological Sciences Theses and Dissertations

This dissertation focuses upon dynamic agents of multidrug resistance (MDR). We used a combination of in silico and in vitro techniques to investigate two membrane transporters that confer MDR – P-glycoprotein, which confers MDR in human cancers, and MtrD, which confers MDR in Neisseria gonorrhoeae. Inhibitors targeting both proteins have tremendous potential for use as co-therapeutics in the treatment of multidrug resistant cancers, or of multidrug resistant infections. However, previously identified inhibitors of P-gp have failed clinical trials due to off-target effects and associated toxicities. Furthermore, the molecular mechanism of antibiotic transport by MtrD is poorly understood, and this dearth …


Chemical And Co-Solute Effects Of Polyethylene Glycol On I-Motif Formation, Lindsey Rutherford May 2021

Chemical And Co-Solute Effects Of Polyethylene Glycol On I-Motif Formation, Lindsey Rutherford

Honors Theses

DNA typically forms Watson and Crick double helix structures in which adenine, thymine, guanine, and cytosine pair with their complimentary DNA base. However, DNA i-motif structures can form in cytosine rich DNA, typically under slightly acidic conditions (~pH 6). DNA i-motifs are four stranded secondary structures in which cytosine pairs with cytosine to form a quadruplex. The i-motifs are typically formed in acidic conditions because of the protonation in the C•C base pair between one of the three hydrogen bases. Recent studies have suggested i-motifs can also form under neutral conditions, which is more realistic for a cell. It is …


Effects Of Crowding Agents On I-Motif Dna, Hayden Brines May 2021

Effects Of Crowding Agents On I-Motif Dna, Hayden Brines

Honors Theses

Deoxyribonucleic acid (DNA) is a well-known double stranded, helical, biological molecule. In addition to its more commonly known structure, DNA can also form more complicated structures like G-quadruplexes and i-motifs (iM). The iMs are formed by cytosine rich DNA and are a four stranded structure that is typically looped around itself. The iM formation is typically pH-dependent and is favored in more acidic conditions; the pKa value is approximately 6.5. This pKa value allows for potential in vivo formation, since the cells have a pH of approximately 7.3. Due to this, iMs are thought to be powerful, innovative molecules for …


Pectin And Alginate Extraction To Treat Liquid Cafo Manure, Clare Sunderman May 2021

Pectin And Alginate Extraction To Treat Liquid Cafo Manure, Clare Sunderman

Honors Projects

For this project, various extraction methods were used to extract pectin from Pastinaca Sativa and alginate from Macrocystis. These extractions were then dried and used in treating 250mL of manure along with a CaCl2 or FeCl3 coagulant. It was found that CaCl2 was not as effective as FeCl3 in coagulating manure. But the results obtained suggest that pectin and alginate obtained with a simpler extraction method is just as effective as the highly purified and refined pectin and alginate produced for the food industry, in the treatment of CAFO manure. The liquid portion of the …


Mediation Of The Uncoupled Enos Pathway Following Oxidative Stress Using Tetrahydrobiopterin And Nitric Oxide Donor Drugs To Restore Tetrahydrobiopterin Concentration, Brianna Munnich Apr 2021

Mediation Of The Uncoupled Enos Pathway Following Oxidative Stress Using Tetrahydrobiopterin And Nitric Oxide Donor Drugs To Restore Tetrahydrobiopterin Concentration, Brianna Munnich

Scholar Week 2016 - present

Presentation Location: Warming House, Olivet Nazarene University

Abstract

The eNOS pathway, found in the endothelium of blood vessels, is a key regulator of nitric oxide levels in the circulatory system. The pathway is controlled through several positive and negative feedback loops [2]. The cofactor tetrahydrobiopterin (BH4) is a major control point in this pathway and under conditions of stress can be reduced into the dihydrobiopterin (BH2) [2,6,7,8,9]. When the reduced form is predominant, the pathway produces reactive oxygen species (ROS) rather than nitric oxide, causing stress and damage to the vessels [6,7,8,9]. In this study, different treatments were studied …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda Apr 2021

Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda

Senior Theses

OleT, a member of the CYP152 family of cytochrome P450s (CYPs), decarboxylates fatty acids using hydrogen peroxide as an oxidant. The resultant products are a terminal alkene and carbon dioxide. This C–C cleavage reaction is highly atypical for CYPs, which prototypically oxygenate substrates, and provides a potential means to enzymatically produce drop-in fuels. OleT contains a heme-iron cofactor that facilitates decarboxylation through the activation of hydrogen peroxide. The catalytic cycle, as determined by transient kinetics, includes two ferryl intermediates known as Compound I (Ole-I) and Compound II (Ole-II). Ole-I performs substrate hydrogen abstraction and subsequent single electron transfer to Ole-II …


Protein Composition: Translating Amino Acid Sequences Into Music, Melody Campbell Apr 2021

Protein Composition: Translating Amino Acid Sequences Into Music, Melody Campbell

WWU Honors College Senior Projects

Proteins are composed of individual building blocks (amino acids) assembled in a chain, resembling beads on a string. This string – or sequence of amino acids – folds into a unique three-dimensional shape to form a fully functional protein. In nature, there are 20 different naturally occurring amino acids. I assigned specific musical chords to each different amino acid and arranged the chords sequentially in an order that mirrored the sequence of amino acids. The resulting composition contains a pattern of chords representative of the protein’s amino acid sequence. For example, if Glycine (one of the 20 natural amino acids) …


Structural Analysis Of Protein-Peptide Interactions, Melody Gao Apr 2021

Structural Analysis Of Protein-Peptide Interactions, Melody Gao

WWU Honors College Senior Projects

Over the last three years in the Amacher lab, I have been fortunate to work on two amazing projects studying protein-peptide interactions: PDZ domains and Class A sortases. Both recognize a certain substrate motif, and we are interested in these proteins' selectivity and promiscuity of their substrate.


Engineering Src Homology 2 Domains With Improved Specificity For Sulfotyrosine, Anya Morozov Mar 2021

Engineering Src Homology 2 Domains With Improved Specificity For Sulfotyrosine, Anya Morozov

Honors Theses

Protein tyrosine O-sulfation (PTS) is a common post-translational modification that has been implicated in a variety of biological processes and human illnesses. Despite continued progress in the field of sulfoproteomics, the extent and function of sulfated tyrosine (sulfotyrosine) residues is a topic of ongoing research. Previous work in the Guo Lab has identified Src Homology-2 (SH2) mutants that have a high affinity for sulfotyrosine along with retained high affinity for their natural ligand, phosphorylated tyrosine (phosphotyrosine). In this thesis, I attempted to generate SH2 mutants that have high affinity and specificity for sulfotyrosine over phosphotyrosine. While I successfully generated …


Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv Jan 2021

Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv

Browse all Theses and Dissertations

To study microsatellites instability and their repair pathways a dual fluorescent (DF2) and selectable (ganciclovir sensitive/ thymidine kinase (TK) expressing) cell system was assayed using replication fork stalling agents hydroxyurea and telomestatin. These cell lines carried ectopically integrated microsatellites derived from the Dystrophia Myotonica Protein Kinase (DMPK) gene ((CTG)102 microsatellite), or an 88 bp polypurine/ polypyrimidine (Pu/Py) repeat from the PKD-1 locus, inserted into a FLP recombinase target site. These microsatellites form non-B DNA structures in -vivo and in-vitro causing replication fork stalling and double strand breaks. DF2 myc (CTG)102 -TK cells treated with hydroxyurea were assayed for mutagenesis of …


Enzymatic Post-Translational Halogenation For Adding Functionality To Biomaterials, Alexander L. Compean Jan 2021

Enzymatic Post-Translational Halogenation For Adding Functionality To Biomaterials, Alexander L. Compean

Browse all Theses and Dissertations

Silk fibroin from the silkworm, Bombyx mori, is a unique biomaterial that has been extensively studied for a variety of applications due to its promising properties such as controllable self-assembly, robust mechanical properties, and biological compatibility. Previously, there have been numerous methods describing the chemical modification of silk fibroin that utilize synthetic or enzymatic means that do not use halogens as a means of functionalization. Herein, a halogenation strategy is presented to modify silk fibroin with the aim of developing a novel functional material through the carbon-halogen (C-X) bond. Modification with NaX (X = Cl, Br, and I) salts, hydrogen …


Study Of Student Resource Use In Introductory Chemistry Courses, Sarah E. Melvin Jan 2021

Study Of Student Resource Use In Introductory Chemistry Courses, Sarah E. Melvin

Electronic Theses and Dissertations

According to the U.S. Government Accountability Office (GAO), college textbook prices have increased by 186% from 1986 to 2004.1 The impact of rising cost of textbooks is increasingly apparent as students are becoming more selective in the courses they enroll in, as well as more concerned with the quality of the learning experience they receive once enrolled in a course.1 In response to high textbook prices, open-education resources (OER) are increasingly becoming more accepted for student use as an alternative to traditional textbook options. OERs are open-source textbook and/or materials that are free to use without worrying about copyright …


The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham Jan 2021

The Effects Of Rolipram, A Selective Phosphodiesterase Inhibitor, On Immortalized Schwann Cell Proliferation, Akap95 And Cyclin D3 Expression, Kyle P. Kenney, Mary Pistack, Angela Asirvatham

Student Research Poster Presentations 2021

Schwann cells are a vital component of the Peripheral Nervous System and aid in the repair of axons following injury. The regulation of Schwann cell growth in vitro is facilitated by heregulin, a neuron-secreted growth factor, and an unknown mitogen that activates the cyclic adenosine monophosphate (cAMP) pathway. The abundance of intracellular cAMP is regulated by a family of enzymes called phosphodiesterases (PDEs). PDE inhibitors such as rolipram have therapeutic potential in various disorders and function by increasing the levels of intracellular cAMP. A-Kinase anchoring proteins (AKAPs), a family of scaffolding proteins that belong to the cAMP/Protein Kinase A (PKA) …


Development Of Linked-Domain Protein Inhibitors Of The E2-Conjugating Enzyme Ube2d, Anneroos E. Nederstigt Jan 2021

Development Of Linked-Domain Protein Inhibitors Of The E2-Conjugating Enzyme Ube2d, Anneroos E. Nederstigt

University of the Pacific Theses and Dissertations

In most eukaryotic organisms, the ubiquitination pathway is one of the most important and versatile signaling systems in use. It is integral to processes such as protein degradation and homeostasis, DNA repair cell cycle regulation, signaling and regulation, epigenetics, and many more. Ubiquitin (Ub) is a short polypeptide of 8.6 kDa, 76 residues that functions as a reversible post-translation modification (PTM). It furthermore contains 7 different lysine residues (K6, K11, K27, K29, K33, K48, K63), all of which can form isopeptide linkages with one another to link individual Ub moieties to form unique polyUb chains onto substrates. The type of …


The F-Box Protein Fbw7 Negatively Regulates The Stability Of Erk3 Protein, Nicole Walters Jan 2021

The F-Box Protein Fbw7 Negatively Regulates The Stability Of Erk3 Protein, Nicole Walters

Browse all Theses and Dissertations

Extracellular signal-regulated kinase 3 (ERK3) is a member of the atypical mitogen-activated protein kinase (MAPK) subfamily, whose members have been shown to play important roles in a number of cellular processes including proliferation, differentiation, migration, and apoptosis. While signals regulating ERK3 kinase activity remain unclear, ERK3 is known to be an unstable protein with function tightly regulated via ubiquitination and proteasomal turnover. The deubiquitinating enzyme USP20 has been shown to regulate ERK3 by stabilizing the kinase, but presently, no destabilizing ubiquitin ligases have been identified. The SKP1-CUL1-F-box protein (SCF) E3 ligases are a subfamily of ubiquitin E3 ligases composed of …


Quantitated Effects Of Nutritional Supplementation On Exercise Induced Sweat, Andrew Blake Austin Browder Jan 2021

Quantitated Effects Of Nutritional Supplementation On Exercise Induced Sweat, Andrew Blake Austin Browder

Browse all Theses and Dissertations

Discovery studies have identified many metabolites contained in human sweat. However, quantitative analysis of the sweat metabolome content remains mostly unknown. Furthermore several attributes, including rate, have been defined to affect sweat metabolite content, while other effectors, like diet, remain unknown. This study works to quantitatively define the metabolite impact caused by nutritional supplementation. To better understand the effect diet plays, a LC-MS method was developed focusing on improving resolution and peak width. While the literature provided examples of how diet affected sweat metabolite concentrations, the long-term effects of diet have not been explored. The experiment described here attempts to …


Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv Jan 2021

Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv

Browse all Theses and Dissertations

To study microsatellites instability and their repair pathways a dual fluorescent (DF2) and selectable (ganciclovir sensitive/ thymidine kinase (TK) expressing) cell system was assayed using replication fork stalling agents hydroxyurea and telomestatin. These cell lines carried ectopically integrated microsatellites derived from the Dystrophia Myotonica Protein Kinase (DMPK) gene ((CTG)102 microsatellite), or an 88 bp polypurine/ polypyrimidine (Pu/Py) repeat from the PKD-1 locus, inserted into a FLP recombinase target site. These microsatellites form non-B DNA structures in -vivo and in-vitro causing replication fork stalling and double strand breaks. DF2 myc (CTG)102 -TK cells treated with hydroxyurea were assayed for mutagenesis of …


Potential Drug Treatment For Duchenne Muscular Dystrophy Which Could Be Through Upregulation Of Lipin1, Rajsi Y. Thaker Jan 2021

Potential Drug Treatment For Duchenne Muscular Dystrophy Which Could Be Through Upregulation Of Lipin1, Rajsi Y. Thaker

Browse all Theses and Dissertations

Duchenne muscular dystrophy (DMD) is a genetic disorder leading to progressive muscle degeneration and weakness due to mutation in dystrophin gene, which is very important for maintaining muscle membrane integrity. Dystrophin is the largest gene in the human genome therefore more prone to mutation. There is currently no cure for DMD. Our lab recently found that Lipin1 deficient myofibers showed upregulation of necroptosis correlated with the loss of muscle membrane integrity. Our primary approach for ameliorating dystrophic phenotype in DMD is through reduction of necroptosis using drugs which can potentially upregulate Lipin1 expression. In this study, we identified two drugs …