Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Single-Variable Porous Nanomaterial Series From Polymer Structure-Directing Agents, Morgan Stefik Dec 2021

Single-Variable Porous Nanomaterial Series From Polymer Structure-Directing Agents, Morgan Stefik

Faculty Publications

Block polymer structure-directing agents (SDA) enable the production of porous nanoscale materials. Most strategies rely upon polymer equilibration where diverse morphologies are realized in porous functional materials. This review details how solvent selectivity determines the polymer SDA behaviors, spanning from bulk-type to solution-type. Equilibrating behavior of either type, however, obscures nanostructure cause-and-effect since the resulting sample series convolve multiple spatial variations. Solution-type SDA behaviors include both dynamic and persistent micelles. Persistent micelle templates (PMT) use high solvent selectivity for kinetic entrapment. PMTs enable independent wall thickness control with demonstrated 2 Å precision alterations. Unimodal PMT pore size distributions have spanned …


Fe-Catalyzed Sulfide Oxidation In Hydrothermal Plumes Is A Source Of Reactive Oxygen Species To The Ocean, Timothy J. Shaw, George W. Luther Iii, Richard Rosas, Véronique E. Oldham, Nicole R. Coffey, John L. Ferry, Dewamunnage M. C. Dias, Mustafa Yücel, Aubin Thibault De Chanvalon Sep 2021

Fe-Catalyzed Sulfide Oxidation In Hydrothermal Plumes Is A Source Of Reactive Oxygen Species To The Ocean, Timothy J. Shaw, George W. Luther Iii, Richard Rosas, Véronique E. Oldham, Nicole R. Coffey, John L. Ferry, Dewamunnage M. C. Dias, Mustafa Yücel, Aubin Thibault De Chanvalon

Faculty Publications

Historically, the production of reactive oxygen species (ROS) in the ocean has been attributed to photochemical and biochemical reactions. However, hydrothermal vents emit globally significant inventories of reduced Fe and S species that should react rapidly with oxygen in bottom water and serve as a heretofore unmeasured source of ROS. Here, we show that the Fe-catalyzed oxidation of reduced sulfur species in hydrothermal vent plumes in the deep oceans supported the abiotic formation of ROS at concentrations 20 to 100 times higher than the average for photoproduced ROS in surface waters. ROS (measured as hydrogen peroxide) were determined in hydrothermal …


Small Studies, Big Decisions: The Role Of Pilot/Feasibility Studies In Incremental Science And Premature Scale-Up Of Behavioral Interventions, Michael William Beets, Lauren Von Klinggraeff, Robert G. Weaver, Bridget Ryan Armstrong, Sarah Burkart Sep 2021

Small Studies, Big Decisions: The Role Of Pilot/Feasibility Studies In Incremental Science And Premature Scale-Up Of Behavioral Interventions, Michael William Beets, Lauren Von Klinggraeff, Robert G. Weaver, Bridget Ryan Armstrong, Sarah Burkart

Faculty Publications

Background: Careful consideration and planning are required to establish “sufficient” evidence to ensure an investment in a larger, more well-powered behavioral intervention trial is worthwhile. In the behavioral sciences, this process typically occurs where smaller-scale studies inform larger-scale trials. Believing that one can do the same things and expect the same outcomes in a larger-scale trial that were done in a smaller-scale preliminary study (i.e., pilot/feasibility) is wishful thinking, yet common practice. Starting small makes sense, but small studies come with big decisions that can influence the usefulness of the evidence designed to inform decisions about moving forward with a …


Ahr Expression On Rorc-Expressing Immune Cells Is Essential For I3c-Mediated Protection Against Colitis, Michal C. Williams Jul 2021

Ahr Expression On Rorc-Expressing Immune Cells Is Essential For I3c-Mediated Protection Against Colitis, Michal C. Williams

Senior Theses

Colitis is an inflammatory bowel disorder (IBD) whose etiology is attributed to modification in the luminal microbiota and dysregulation in the immune response. Indole is a signaling molecule which is naturally produced by gut luminal microbiota. Indole-3- carbinol (I3C) is a compound commonly found in vegetables and a ligand for the aryl hydrocarbon receptor (AhR). Previous studies have detected decreased expression and activation on the AhR receptor in colitis patients, thought to possibly alter gut microbiota metabolism, subsequently promoting colitis. 1 AhR, expressed in a variety of immune and epithelial cells, contributes to gut homeostasis by affecting vital mediators such …


Characterization Of Ph – Responsive Nanocage Based On The Ferritin Iron Storage Protein, Satyam Singh Jul 2021

Characterization Of Ph – Responsive Nanocage Based On The Ferritin Iron Storage Protein, Satyam Singh

Theses and Dissertations

The iron-storage protein ferritin (Ftn) assembles into a protein cage structure with 24 subunits and octahedral (4-fold, 3-fold, 2-fold) symmetry. Each monomeric subunit contains a robust four-helix bundle fold. The fully assembled Ftn structure has a high degree of thermal stability (up to 100°C), a mono dispersed size (12 nm in diameter), and a large central cavity (7-8 nm in diameter). The central cavity stores ferric iron in phylogenetically diverse group of organisms, including humans. The central cavity has been used for encapsulation of cargoes such as other metals, contrast agents for imaging, small molecule drugs for therapy, …


Tailored Porous Carbons Enabled By Persistent Micelles With Glassy Cores, Eric R. Williams, Paige L. Mcmahon, Joseph E. Reynolds Iii, Jonathan L. Snider, Vitalie Stavila, Mark Allendorf, Morgan Stefik Jun 2021

Tailored Porous Carbons Enabled By Persistent Micelles With Glassy Cores, Eric R. Williams, Paige L. Mcmahon, Joseph E. Reynolds Iii, Jonathan L. Snider, Vitalie Stavila, Mark Allendorf, Morgan Stefik

Faculty Publications

Porous nanoscale carbonaceous materials are widely employed for catalysis, separations, and electrochemical devices where device performance often relies upon specific and well-defined regular feature sizes. The use of block polymers as templates has enabled affordable and scalable production of diverse porous carbons. However, popular carbon preparations use equilibrating micelles which can change dimensions in response to the processing environment. Thus, polymer methods have not yet demonstrated carbon nanomaterials with constant average template diameter and tailored wall thickness. In contrast, persistent micelle templates (PMTs) use kinetic control to preserve constant micelle template diameters, and thus PMT has enabled constant pore diameter …


Host–Guest Interactions In A Metal–Organic Framework Isoreticular Series For Molecular Photocatalytic Co2 Reduction, Philip M. Stanley, Johanna Haimerl, Christopher Thomas, Alexander Urstoeger, Michael Schuster Prof. Dr., Natalia B. Shustova Prof. Dr., Angela Casini Prof. Dr., Bernhard Rieger Prof. Dr., Julien Warnan Dr., Roland A. Fischer Prof. Dr. May 2021

Host–Guest Interactions In A Metal–Organic Framework Isoreticular Series For Molecular Photocatalytic Co2 Reduction, Philip M. Stanley, Johanna Haimerl, Christopher Thomas, Alexander Urstoeger, Michael Schuster Prof. Dr., Natalia B. Shustova Prof. Dr., Angela Casini Prof. Dr., Bernhard Rieger Prof. Dr., Julien Warnan Dr., Roland A. Fischer Prof. Dr.

Faculty Publications

A strategy to improve homogeneous molecular catalyst stability, efficiency, and selectivity is the immobilization on supporting surfaces or within host matrices. Herein, we examine the co-immobilization of a CO2 reduction catalyst [ReBr(CO)3(4,4′-dcbpy)] and a photosensitizer [Ru(bpy)2(5,5′-dcbpy)]Cl2 using the isoreticular series of metal–organic frameworks (MOFs) UiO-66, -67, and -68. Specific host pore size choice enables distinct catalyst and photosensitizer spatial location—either at the outer MOF particle surface or inside the MOF cavities—affecting catalyst stability, electronic communication between reaction center and photosensitizer, and consequently the apparent catalytic rates. These results allow for a rational understanding of an optimized supramolecular layout of catalyst, …


Beyond Structural Motifs: The Frontier Of Actinide-Containing Metal–Organic Frameworks, Corey R. Martin, Gabrielle A. Leith, Natalia B. Shustova Prof. Dr. May 2021

Beyond Structural Motifs: The Frontier Of Actinide-Containing Metal–Organic Frameworks, Corey R. Martin, Gabrielle A. Leith, Natalia B. Shustova Prof. Dr.

Faculty Publications

In this perspective, we feature recent advances in the field of actinide-containing metal–organic frameworks (An-MOFs) with a main focus on their electronic, catalytic, photophysical, and sorption properties. This discussion deviates from a strictly crystallographic analysis of An-MOFs, reported in several reviews, or synthesis of novel structural motifs, and instead delves into the remarkable potential of An-MOFs for evolving the nuclear waste administration sector. Currently, the An-MOF field is dominated by thorium- and uranium-containing structures, with only a few reports on transuranic frameworks. However, some of the reported properties in the field of An-MOFs foreshadow potential implementation of these materials and …


Beyond Structural Motifs: The Frontier Of Actinide-Containing Metal–Organic Frameworks, Corey R. Martin, Gabrielle A. Leith, Natalia B. Shustova May 2021

Beyond Structural Motifs: The Frontier Of Actinide-Containing Metal–Organic Frameworks, Corey R. Martin, Gabrielle A. Leith, Natalia B. Shustova

Faculty Publications

In this perspective, we feature recent advances in the field of actinide-containing metal-organic frameworks (An-MOFs) with a main focus on their electronic, catalytic, photophysical, and sorption properties. This discussion deviates from a strictly crystallographic analysis of An-MOFs, reported in several reviews, or synthesis of novel structural motifs, and instead delves into the remarkable potential of An-MOFs for evolving the nuclear waste administration sector. Currently, the An-MOF field is dominated by thorium- and uranium-containing structures, with only a few reports on transuranic frameworks. However, some of the reported properties in the field of An-MOFs foreshadow potential implementation of these materials and …


The Supercam Instrument Suite On The Mars 2020 Rover: Science Objectives And Mast-Unit Description, S. Maurice, R. C. Wiens, P. Bernardi, P. Caïs, S. Robinson, T. Nelson, O. Gasnault, J. -M. Reess, M. Deleuze, F. Rull, J. -A. Manrique, S. Abbaki, R. B. Anderson, Y. André, Stanley M. Angel, G. Arana, T. Battault, P. Beck, K. Benzerara, S. Bernard, Et. Al. Apr 2021

The Supercam Instrument Suite On The Mars 2020 Rover: Science Objectives And Mast-Unit Description, S. Maurice, R. C. Wiens, P. Bernardi, P. Caïs, S. Robinson, T. Nelson, O. Gasnault, J. -M. Reess, M. Deleuze, F. Rull, J. -A. Manrique, S. Abbaki, R. B. Anderson, Y. André, Stanley M. Angel, G. Arana, T. Battault, P. Beck, K. Benzerara, S. Bernard, Et. Al.

Faculty Publications

On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report …


Broken-Hearted” Carbon Bowl Via Electron Shuttle Reaction: Energetics And Electron Coupling, Gabrielle A. Leith, Allison M. Rice, Brandon J. Yarbrough, Preecha Kittikhunnatham, Abijai Mathur, Nicholas A. Morris, Megan J. Francis, Anna A. Berseneva, Poonam Dhull, Richard D. Adams, M. Victoria Bobo, Aaron A. Vannucci, Mark D. Smith, Sophya Garashchuk, Natalia B. Shustova Apr 2021

Broken-Hearted” Carbon Bowl Via Electron Shuttle Reaction: Energetics And Electron Coupling, Gabrielle A. Leith, Allison M. Rice, Brandon J. Yarbrough, Preecha Kittikhunnatham, Abijai Mathur, Nicholas A. Morris, Megan J. Francis, Anna A. Berseneva, Poonam Dhull, Richard D. Adams, M. Victoria Bobo, Aaron A. Vannucci, Mark D. Smith, Sophya Garashchuk, Natalia B. Shustova

Faculty Publications

Unprecedented one-step CC bond cleavage leading to opening of the buckybowl (π-bowl), that could provide access to carbon-rich structures with previously inaccessible topologies, is reported; highlighting the possibility to implement drastically different synthetic routes to π-bowls in contrast to conventional ones applied for polycyclic aromatic hydrocarbons. Through theoretical modeling, we evaluated the mechanistic pathways feasible for π-bowl planarization and factors that could affect such a transformation including strain and released energies. Through employment of Marcus theory, optical spectroscopy, and crystallographic analysis, we estimated the possibility of charge transfer and electron coupling between “open” corannulene and a strong electron acceptor such …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda Apr 2021

Lions, Tigers, And Hemes - Oh My! A Dynamic Look At The Electronic Effects Of Porphyrin Substitution On Cytochrome P450 Olet, Alexis J. Holwerda

Senior Theses

OleT, a member of the CYP152 family of cytochrome P450s (CYPs), decarboxylates fatty acids using hydrogen peroxide as an oxidant. The resultant products are a terminal alkene and carbon dioxide. This C–C cleavage reaction is highly atypical for CYPs, which prototypically oxygenate substrates, and provides a potential means to enzymatically produce drop-in fuels. OleT contains a heme-iron cofactor that facilitates decarboxylation through the activation of hydrogen peroxide. The catalytic cycle, as determined by transient kinetics, includes two ferryl intermediates known as Compound I (Ole-I) and Compound II (Ole-II). Ole-I performs substrate hydrogen abstraction and subsequent single electron transfer to Ole-II …


The Effect Of Alcalase Concentration On The Proteins From The Shells Of Litopenaeus Setiferus (White Shrimp), Liam T. Quan Jan 2021

The Effect Of Alcalase Concentration On The Proteins From The Shells Of Litopenaeus Setiferus (White Shrimp), Liam T. Quan

Journal of the South Carolina Academy of Science

Chitin is a naturally abundant polymer that also happens to be biodegradable. Chitin can be used in a variety of different products such as biodegradable plastics, papers, medical products, foods, and medical treatments. To extract chitin, shells must be demineralized and deproteinized. The goal of this experiment was to examine the effect of the protease Alcalase in the deproteinization of litopenaeus setiferus shells. The hypothesis was that if the concentration of Alcalase increased, then the absorbance of proteins in the spectrophotometer reading would increase. The null hypothesis was that if the concentration increased there would be no change in absorption. …


Self-Assembled Thermoresponsive Nanogel From Grafted Hyaluronic Acid As A Biocompatible Delivery Platform For Curcumin With Enhanced Drug Loading And Biological Activities, Jittima Amie Luckanagul, Pahweenvaj Ratnatilaka Na Bhuket, Chawanphat Muangnoi, Pranee Rojsitthisak, Qian Wang, Pornchai Rojsitthisak Jan 2021

Self-Assembled Thermoresponsive Nanogel From Grafted Hyaluronic Acid As A Biocompatible Delivery Platform For Curcumin With Enhanced Drug Loading And Biological Activities, Jittima Amie Luckanagul, Pahweenvaj Ratnatilaka Na Bhuket, Chawanphat Muangnoi, Pranee Rojsitthisak, Qian Wang, Pornchai Rojsitthisak

Faculty Publications

A hyaluronic acid-grafted poly(N-isopropylacrylamide) (HA-pNIPAM) was synthesized as a polymeric nanogel platform for encapsulation and delivery of hydrophobic bioactive compounds using curcumin as a model drug. As demonstrated by transmission electron microscopy and dynamic light scattering techniques, the HA-pNIPAM was simply assembled into spherical nano-sized particles with the thermoresponsive behavior. The success of curcumin aqueous solubilization was confirmed by fluorescent spectroscopy. The resulting nanogel formulation enhanced the aqueous solubility and uptake into NIH-3T3 cells of curcumin. This nanogel formulation also demonstrates cytocompatibility against NIH-3T3 cells, which deems it safe as a delivery vehicle. Moreover, the formulation has a slight skin-protection …