Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2021

Discipline
Institution
Keyword
Publication
File Type

Articles 301 - 305 of 305

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Adenosine Triphosphate (Atp) As A Metric Of Microbial Biomass In Aquatic Systems: New Simplified Protocols, Laboratory Validation, And A Reflection On Data From The Literature, Alexander B. Bochdansky, Alison N. Stouffer, Nyjaee N. Washington Jan 2021

Adenosine Triphosphate (Atp) As A Metric Of Microbial Biomass In Aquatic Systems: New Simplified Protocols, Laboratory Validation, And A Reflection On Data From The Literature, Alexander B. Bochdansky, Alison N. Stouffer, Nyjaee N. Washington

OES Faculty Publications

The use of adenosine triphosphate (ATP) as a universal biomass indicator is built on the premise that ATP concentration tracks biomass rather than the physiological condition of cells. However, reportedly high variability in ATP in response to environmental conditions is the main reason the method has not found widespread application. To test possible sources of this variability, we used the diatom Thalassiosira weissflogii as a model and manipulated its growth rate through nutrient limitation and through exposure to three different temperatures (15°C, 20°C, and 25°C). We simplified the ATP protocol with hot‐water or chemical extraction methods, modified a commercially available …


Marine Phytoplankton Functional Types Exhibit Diverse Responses To Thermal Change, S. I. Anderson, A. D. Barton, Sophie Clayton, S. Dutkiewicz, T. A. Rynearson Jan 2021

Marine Phytoplankton Functional Types Exhibit Diverse Responses To Thermal Change, S. I. Anderson, A. D. Barton, Sophie Clayton, S. Dutkiewicz, T. A. Rynearson

OES Faculty Publications

Marine phytoplankton generate half of global primary production, making them essential to ecosystem functioning and biogeochemical cycling. Though phytoplankton are phylogenetically diverse, studies rarely designate unique thermal traits to different taxa, resulting in coarse representations of phytoplankton thermal responses. Here we assessed phytoplankton functional responses to temperature using empirically derived thermal growth rates from four principal contributors to marine productivity: diatoms, dinoflagellates, cyanobacteria, and coccolithophores. Using modeled sea surface temperatures for 1950-1970 and 2080-2100, we explored potential alterations to each group's growth rates and geographical distribution under a future climate change scenario. Contrary to the commonly applied Eppley formulation, our …


Structual Analysis Of The Cl-Par-4 Tumor Suppressor As A Function Of Ionic Environment, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Jan 2021

Structual Analysis Of The Cl-Par-4 Tumor Suppressor As A Function Of Ionic Environment, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

Prostate apoptosis response-4 (Par-4) is a proapoptotic tumor suppressor protein that has been linked to a large number of cancers. This 38 kilodalton (kDa) protein has been shown to be predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate the 25 kDa functionally active cleaved Par-4 protein (cl-Par-4) that inhibits NF-κB-mediated cell survival pathways and causes selective apoptosis in tumor cells. Here, we have employed circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) to assess the effects of various monovalent and divalent salts upon the conformation of cl-Par-4 in vitro. We have …


Photoreceptor Phosphodiesterase (Pde6): Activation And Inactivation Mechanisms During Visual Transduction In Rods And Cones, Rick H. Cote Jan 2021

Photoreceptor Phosphodiesterase (Pde6): Activation And Inactivation Mechanisms During Visual Transduction In Rods And Cones, Rick H. Cote

Faculty Publications

Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary

intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes …


Photoreceptor Phosphodiesterase (Pde6): Structure, Regulatory Mechanisms, And Implications For Treatment Of Retinal Diseases, Rick H. Cote, Richa Gupta, Michael J. Irwin, Xin Wang Jan 2021

Photoreceptor Phosphodiesterase (Pde6): Structure, Regulatory Mechanisms, And Implications For Treatment Of Retinal Diseases, Rick H. Cote, Richa Gupta, Michael J. Irwin, Xin Wang

Faculty Publications

The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. PDE6 is a peripheral membrane protein that is localized to the signaling-transducing compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein coupled visual transduction pathway, activation of PDE6 catalysis causes in a rapid decrease in cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma membrane. Because of its importance in the phototransduction …