Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

2013

Discipline
Institution
Keyword
Publication
File Type

Articles 121 - 133 of 133

Full-Text Articles in Nanoscience and Nanotechnology

Functions And Future Applications Of F1 Atpase As Nanobioengine - Powering The Nanoworld!, Sandip S. Magdum Jan 2013

Functions And Future Applications Of F1 Atpase As Nanobioengine - Powering The Nanoworld!, Sandip S. Magdum

Sandip S. Magdum

Recent nanotechnological revolution mandates astonishing imagination about future nanoworld. Nature has ability to create nanobiomolecules which can function in extraordinary way which can be used to produce nano hybrid systems. The opportunity to use such nanobiomolecules in combination of nanomechanical systems for development of novel nano hybrid systems for their various applications needs to explore in further nanotechnological development. F1 ATPase is a subunit of ATP synthase, which is one of the biomolecular structure works on the plasma membrane of the living cell. The reversible function of F1 ATPase gives a counterclockwise rotation of γ shaft by hydrolyzing ATP and …


Tem Analysis As A Tooll For Toxicology Assessment Of Occupational Exposure To Airborne Nanoparticles From Welding, João F. Gomes Jan 2013

Tem Analysis As A Tooll For Toxicology Assessment Of Occupational Exposure To Airborne Nanoparticles From Welding, João F. Gomes

João F Gomes

No abstract provided.


Notice On A Methodology For Characterizing Emissions Of Ultrafine Particles/Nanoparticles In Microenvironments, João F. Gomes Jan 2013

Notice On A Methodology For Characterizing Emissions Of Ultrafine Particles/Nanoparticles In Microenvironments, João F. Gomes

João F Gomes

No abstract provided.


Biodiesel Production From Waste Trying Oils Over Lime Catalysts, João F. Gomes Jan 2013

Biodiesel Production From Waste Trying Oils Over Lime Catalysts, João F. Gomes

João F Gomes

No abstract provided.


Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2013

Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by …


Mild Yet Phase-Selective Preparation Of Tio2 Nanoparticles From Ionic Liquids – A Critical Study, Tarek Alammar, Heshmat Noei, Yuemin Wang, Anja V. Mudring Jan 2013

Mild Yet Phase-Selective Preparation Of Tio2 Nanoparticles From Ionic Liquids – A Critical Study, Tarek Alammar, Heshmat Noei, Yuemin Wang, Anja V. Mudring

Anja V. Mudring

The phase selective synthesis of nanocrystalline TiO2, titania, in ionic liquids (ILs) is explored. The influence not only of the IL but also of the Ti-precursor, pH, and temperature is investigated. Sonochemical synthesis, microwave synthesis and conventional heating are compared. In the case of Ti(OiPr)4 (OiPr ¼ isopropyl) as the Ti-source the ILs [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide), [C3mimOH][Tf2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amide), [C4Py]- [Tf2N] (butylpyridinium bis(trifluoromethanesulfonyl)amide), [N1888][Tf2N] (methyltrioctylammonium bis- (trifluoromethanesulfonyl)amide), and [P66614][Tf2N] (tetradecyltrihexyl phosphonium bis(trifluoromethanesulfonyl) amide) led at ambient temperature to TiO2 in the form of anatase. The morphology of nano-anatase is controlled by the IL cation. Anatase nanospheres with a crystal size …


Interface-Assisted Ionothermal Synthesis, Phase Tuning, Surface Modification And Bioapplication Of Ln3+-Doped Nagdf4 Nanocrystals, Qiang Ju, Paul S. Campbell, Anja V. Mudring Jan 2013

Interface-Assisted Ionothermal Synthesis, Phase Tuning, Surface Modification And Bioapplication Of Ln3+-Doped Nagdf4 Nanocrystals, Qiang Ju, Paul S. Campbell, Anja V. Mudring

Anja V. Mudring

Phase-selective synthesis of trivalent lanthanide-doped NaGdF4 nanocrystals, capped by ionic liquid cations bearing long alkyl chains, succeeded via a one-step interface-assisted ionothermal route. Owing to the existence of an interface formed between hydrophobic ionic liquids and ethylene glycol, selectively either pure cubic or hexagonal phase NaGdF4 could be obtained by changing the amount of the added surfactant, polyethyleneimine. By doping various trivalent lanthanide cations, multicolor emissions under excitation by a single wavelength could be achieved. The nanocrystals can be surface derivatized by an amphiphilic polymer and endowed with functional groups that allow the particles to not only be dispersed in …


Phase And Morphology Selective Interface-Assisted Synthesis Of Highly Luminescent Ln3+-Doped Nagdf4 Nanorods, Anja V. Mudring, Qiang Ju Jan 2013

Phase And Morphology Selective Interface-Assisted Synthesis Of Highly Luminescent Ln3+-Doped Nagdf4 Nanorods, Anja V. Mudring, Qiang Ju

Anja V. Mudring

Making use of the multifunctional properties of ionic liquids by employing them as a fluoride resource and hydrophilic phase, we have grown small, monodisperse, highly luminescent Ln3+-doped NaGdF4 nanorods at the interface between octadecene and the reactive ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. The obtained nanocrystals could further be endowed with functional groups and rendered water dispersible, which allows them to be used for biodetection.


White-Light-Emitting Single Phosphors Via Triply Doped Laf3 Nanoparticles, Chantal Lorbeer, Anja V. Mudring Jan 2013

White-Light-Emitting Single Phosphors Via Triply Doped Laf3 Nanoparticles, Chantal Lorbeer, Anja V. Mudring

Anja V. Mudring

The production of high-quality phosphors for white-emitting applications is an important goal for the settlement of light-emitting diodes (LEDs) in the market and households. Single phosphors directly yielding white emission are advantageous in comparison to a mixture of individual red, green, and blue phosphors as these are hampered by reabsorption of the blue light. Here, a combined approach to uniform, nanoscale particles as single-white-emitting phosphor is realized via an ionic-liquid-based synthesis. LaF3 particles codoped with various amounts of Tm3+, Tb3+, and Eu3+ were synthesized, and their structural, morphological, and optical properties were studied. Small particles with a mean size of …


Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen Dec 2012

Demonstration And Modeling Of Multi-Bit Resistance Random Access Memory, Albert Chen

Albert B Chen

Although intermediates resistance states are common in resistance random access memory (RRAM), two-way switching among them has not been demonstrated. Using a nanometallic bipolar RRAM, we have illustrated a general scheme for writing/rewriting multi-bit memory using voltage pulses. Stability conditions for accessing intermediate states have also been determined in terms of a state distribution function and the weight of serial load resistance. A multi-bit memory is shown to realize considerable space saving at a modest decrease of switching speed.


Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee Dec 2012

Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee

Dr. Mohammad Wasi Ahmad (Md Wasi Ahmad)

No abstract provided.


Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho Dec 2012

Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

A novel, rapid, one-pot, and facile approach was developed to synthesize positively charged gold nanoparticles [(+) AuNPs] by employing an aqueous solution of HAuCl4·3H2O as a precursor at 30 °C and a stainless-steel mesh as a reducing agent. The penetration of Cl− ions into the stainless-steel surface results in corrosion on the stainless-steel surface and excretion of electrons which are used for reduction of Au3+ → Au0. As a result, (+) AuNPs 5-20 nm in size, mostly monodispersed, were synthesized within 3 h. The as-synthesized AuNPs were charaterized by UV-vis, DLS, XRD, TEM, HR-TEM, EDX and SAED. The utilization of …


Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho Dec 2012

Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho

Dr. Mohammad Mansoob Khan

Positively charged gold nanoparticles [(+) AuNPs] of 5-20 nm were synthesized by using electrochemically active biofilm (EAB) formed on a stainless steel mesh, within 30 minutes, in aqueous solution containing HAuCl4 as a precursor and sodium acetate as an electron donor. Electrochemically active bacteria present on biofilm oxidize the sodium acetate by producing electrons. Simultaneously, stainless steel also provides electrons because of the Cl− ions penetration into the stainless steel. Combined effect of both the EAB and stainless steel mesh enhances the availability of electrons for the reduction of Au3+ in the solution, which makes this synthesis efficient and fast. …