Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Simultaneous Enhancement Of The Methylene Blue Degradation And Power Generation In Microbial Fuel Cell By Gold Nanoparticles, Mohammad Mansoob Khan Dr, T. H. Han, S. Kalathil, J. Lee, M. H. Cho May 2013

Simultaneous Enhancement Of The Methylene Blue Degradation And Power Generation In Microbial Fuel Cell By Gold Nanoparticles, Mohammad Mansoob Khan Dr, T. H. Han, S. Kalathil, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

This study examined the effect of positively charged gold nanoparticles ((+)AuNPs) on the enhancement of methylene blue (MB) degradation in microbial fuel cell (MFC) cathode. The maximum electricity production of 36.56 mW/m2 and complete MB degradation were achieved simultaneously. The MFC performance and MB degradation are strictly dependent on cathodic conditions, such as N2 bubbling, air bubbling and addition of H2O2. MB was reduced rapidly under anaerobic condition, whereas complete oxidative mineralization of MB occurred in the presence of dissolved oxygen (DO) or H2O2. (+)AuNPs enhanced the electricity generation in the MFCs involving MB degradation owing to its electron relay …


Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho Dec 2012

Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho

Dr. Mohammad Mansoob Khan

Positively charged gold nanoparticles [(+) AuNPs] of 5-20 nm were synthesized by using electrochemically active biofilm (EAB) formed on a stainless steel mesh, within 30 minutes, in aqueous solution containing HAuCl4 as a precursor and sodium acetate as an electron donor. Electrochemically active bacteria present on biofilm oxidize the sodium acetate by producing electrons. Simultaneously, stainless steel also provides electrons because of the Cl− ions penetration into the stainless steel. Combined effect of both the EAB and stainless steel mesh enhances the availability of electrons for the reduction of Au3+ in the solution, which makes this synthesis efficient and fast. …