Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 61 - 88 of 88

Full-Text Articles in Nanoscience and Nanotechnology

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Mar 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In the …


(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari Mar 2016

(I) Polymer Nanocomposites: Rheology And Processing For Mesoporous Materials And (Ii) Nanopatterning Of Metal Oxides Using Soft Lithography, Rohit Kothari

Doctoral Dissertations

The research in this dissertation is categorized into two parts. The first part is focused on investigation of order-to-disorder transitions (ODT) in nanocomposites of an amphiphilic block copolymer containing various hydrogen-bonded additives, and fabrication of novel mesoporous silica based materials by utilizing such nanocomposites as templates. Disordered Pluronic®, poly(ethylene oxide) (PEO)−poly(propylene oxide) (PPO)−PEO triblock copolymer upon blending with small molecule additives containing hydrogen-bond-donating functional groups (carboxyl or hydroxyl) result into ordered nanoscale morphologies by preferentially interacting with the hydrophilic PEO chains in the Pluronic®. The dependence of ODT-temperature in these novel Pluronic®/small-molecule-additive complexes on composition, number and type of functional …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang Jan 2016

Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang

Dissertations, Master's Theses and Master's Reports

Solar photovoltaic (PV) devices harvest energy from solar radiation and convert it to electricity. PV technologies, as an alternative to traditional fossil fuels, use clean and renewable energy while minimizing pollution. For decades researchers have been developing thin film solar cells as an important alternatives to the relatively expensive bulk crystal solar cell technology. Among those, hydrogenated amorphous silicon (a-Si:H) solar cells prevails for good efficiency, non-toxic and materially abundant nature. However, a-Si:H thickness must be minimized to prevent light induced degradation, so optical enhancement is necessary. Light manipulation has to be applied and carefully engineered to trap light within …


Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure Jan 2016

Synthesis Of Titania Thin Films With Controlled Mesopore Orientation: Nanostructure For Energy Conversion And Storage, Suraj R. Nagpure

Theses and Dissertations--Chemical and Materials Engineering

This dissertation addresses the synthesis mechanism of mesoporous titania thin films with 2D Hexagonal Close Packed (HCP) cylindrical nanopores by an evaporation-induced self-assembly (EISA) method with Pluronic surfactants P123 and F127 as structure directing agents, and their applications in photovoltaics and lithium ion batteries. To provide orthogonal alignment of the pores, surface modification of substrates with crosslinked surfactant has been used to provide a chemically neutral surface. GISAXS studies show not only that aging at 4°C facilitates ordered mesostructure development, but also that aging at this temperature helps to provide orthogonal orientation of the cylindrical micelles which assemble into an …


Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche Dec 2015

Doping Plasmon-Enhanced Tio2 With Zirconia To Improve Solar Energy Harvesting In Dye-Sensitized Solar Cells, Anastasia Pasche

Electronic Thesis and Dissertation Repository

Solar energy is a promising solution towards meeting the world’s ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with potential for commercial application, but are plagued by inefficiency due to their poor sunlight absorption. Silver nanoparticles have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance causes local hot spots, resulting in cell deterioration. This thesis studies the mitigation of thermal energy loss of plasmon-enhanced DSSCs by the co-incorporation of zirconia, a well-known thermostabilizer, into the cell’s photoactive material. TiO2 was also synthesized using green bio-sourced solvents in supercritical CO2 to compare …


Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales Dec 2015

Incorporation Of High-K Hfo2 Thin Films In A-Igzo Thin Film Transistor Devices, Aaron Hamilton Bales

Masters Theses

In this study, HfO2 [hafnium oxide] thin films are investigated extensively as part of indium gallium zinc oxide (IGZO) thin film transistor (TFT) devices. They are incorporated into the TFTs, both as a gate insulator and a passivation layer. First, the HfO2 [hafnium oxide] films themselves are investigated through an annealing study and through I-V and C-V measurements. Then, HfO2 [hafnium oxide] is suggested as a replacement for commonly used SiO2 [silicon dioxide] gate insulator, as it has a dielectric constant that is 4 – 6 times higher. This higher dielectric constant allows for comparable TFT performance at a lower …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence Mar 2015

Functional Nanostructures From Nanoparticle Building Blocks, Jimmy Lawrence

Doctoral Dissertations

Advances in the synthetic strategies of engineered nanomaterials, multifunctional molecules and polymers have opened pathways for the development of functional nanomaterials having unique optoelectronic, mechanical, and biological properties. By designing the chemistry of surface ligands, the organic interface of nanoparticles, one can further the versatility and utilization of engineered nanomaterials, opening pathways for breakthroughs in sensing, catalysis, and delivery using nanomaterials. This thesis describes the synthesis and characterization of small molecule and polymer ligand functionalized inorganic nanoparticles (e.g., metal, semiconducting). Embedding specific chemical functionality into the ligand periphery of nanoparticles enables the resulting functional nanoparticles to react selectively …


Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson Dec 2014

Highly Transparent, Self-Cleaning, And Antireflective Nanoparticle Coatings, Corey Seth Thompson

Graduate Theses and Dissertations

Current solar panel technologies require a sheet of glass to serve as both mechanical support and to protect the cells from the environment. The reflection from the glass sheet can reflect up to 8% of the incident light, reducing the power output of the panel. Antireflective coatings can be used to allow more light to enter the panel to be converted into usable electricity. However, no solid thin film materials exhibit a low enough index of refraction to serve as antireflective coatings for common solar glass. The main goal of this research was to investigate the self-cleaning, antifogging, and antireflective …


Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh Nov 2014

Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh

Doctoral Dissertations

Engineering the surface functionality of nanomaterials is the key to investigate the interactions between nanomaterials and biomolecules for potent biological applications such as therapy, imaging and diagnostics. My research has been orientted to engineer both of the surface monolayers and core materials to fabricate surface-functionalized nanomaterials through the synergistic multidisciplinary approach that combine organic chemistry, materials science and biology. This thesis illustrates the design and synthesis of the surface-funcitonalized quantum dots (QDs) and gold nanoparticles (AuNPs) for the fundamental studies and practical applications. For QDs, A new class of cationic QDs with quaternary ammonium derivatives was synthesized to provide permanent …


Effects Of Nanoholes Grown By Molecular Beam Droplet Epitaxy On Electrical Properties Of Two Dimensional Electron Gas, Yusuke Hirono Aug 2014

Effects Of Nanoholes Grown By Molecular Beam Droplet Epitaxy On Electrical Properties Of Two Dimensional Electron Gas, Yusuke Hirono

Graduate Theses and Dissertations

The effects of nanoholes, grown by molecular beam droplet epitaxy, on the electrical properties of quantum well (QW) heterostructures are reported. To investigate how the depth of nanoholes affect the electrical properties of the QW heterostructures, the growth conditions for nanoholes were optimized with respect to their depth and density. Using the results of the optimization of the nanohole growth, three InGaAs pseudomorphic quantum wells with nanoholes were investigated with varied depth and a constant density. A QW heterostructure without nanoholes was grown as a reference structure. For all the samples, temperature dependent Hall effect measurements, noise studies as a …


Interfacial Interactions Between Carbon Nanoparticles And Conjugated Polymers, Yanqi Luo Aug 2014

Interfacial Interactions Between Carbon Nanoparticles And Conjugated Polymers, Yanqi Luo

Master's Theses

Conjugated polymer based electronics, a type of flexible electronic devices, can be produced from solution by traditional printing and coating processes in a roll-to-roll format such as papers and graphic films. This shows great promise for the emerging energy generation and conversion. The device performance of polymer electronics is largely dependent of crystalline structures and morphology of photoactive layers. However, the solution crystallization kinetics of conjugated polymers in the presence of electron acceptor nanoparticles has not been fully understood yet. In this study, solution crystallization kinetics of poly (3-hexylthiophene) in the presence of carbon nanotubes and graphene oxide has been …


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Fabrication And Characterization Of Amorphous/Nanocrystalline Thin Film Composite, Benjamin Seth Newton May 2014

Fabrication And Characterization Of Amorphous/Nanocrystalline Thin Film Composite, Benjamin Seth Newton

Graduate Theses and Dissertations

Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon …


Zinc Oxide Nanorod Based Ultraviolet Detectors With Wheatstone Bridge Design, Arun Vasudevan Dec 2013

Zinc Oxide Nanorod Based Ultraviolet Detectors With Wheatstone Bridge Design, Arun Vasudevan

Graduate Theses and Dissertations

This research work, for the first time, investigated metal semiconductor-metal (MSM) zine oxide (ZnO) nanorod based ultra-violet (UV) detectors having a Wheatstone bridge design with a high

responsivity at room temperature and above, as well as a responsivity that was largely independent of the change in ambient conditions. The ZnO nanorods which acted as the sensing element of the detector were grown by a chemical growth technique. Studies were conducted to determine the effects on ZnO nanorod properties by varying the concentration of the chemicals used for the rod growth. These studies showed how the rod diameter and the deposition …


Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes Jun 2013

Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes

Materials Engineering

Fluorescence profiles of quantum dots (QDs) were characterized to select the ideal QDs for encapsulation in phospholipids for use as biomarkers to selectively adhere to cancer cells. QDs were synthesized and extracted 0, 30, 60, and 90 seconds after precursor compounds were mixed. These extractions were isolated by extraction time. Portions from each vial were coated in a zinc sulfide shelling procedure, leaving at least half of the QD solution unshelled. These samples were characterized over four days to monitor fluctuations in fluorescence. This was done utilizing an Ocean Optics spectrometer in conjunction with Spectra Suite software. The central wavelength, …


Application Of Quantum Dots Onto Glass Wafers As A Feasibility Test For The Spectral Down Conversion Of Uv Light For Solar Cells, Anthony Fong Jun 2013

Application Of Quantum Dots Onto Glass Wafers As A Feasibility Test For The Spectral Down Conversion Of Uv Light For Solar Cells, Anthony Fong

Materials Engineering

Quantum dots have the ability to convert high energy photons into multiple lower energy photons. Down conversion of such high energy photons from sources such as UV light can be beneficial for applications on solar cells which waste much of the energy in the form of thermalization. To test this theory, a solar cell was hooked up to an Amprobe Solar Analyzer and tests were run to compare power output with and without the presence of quantum dots. Additionally, quantum dots were spin coated onto a glass wafer to determine its adhesion ability. Spectrometer readings were taken of the wafer …


Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan May 2013

Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan

Doctoral Dissertations

Plasmonic nanomaterials have attracted a lot of attention recently due to their application in various fields such as chemical and biological sensing, catalysis, energy harvesting and optical devices. However, there is a need to address several outstanding issues with these materials, including cost-effective synthesis, tunability in plasmonic characteristics, and long term stability. In this thesis, we have focused on bimetallic nanoparticles (NPs) of Ag and Co due to their immiscibility as well as their individual properties. First, a pulsed laser induced dewetting route was used to synthesize Ag-Co bimetallic plasmonic NPs. An synthesis parameter space was derived to show the …


Iii-V Bismide Optoelectronic Devices, Dongsheng Fan May 2013

Iii-V Bismide Optoelectronic Devices, Dongsheng Fan

Graduate Theses and Dissertations

This dissertation explores modeling, molecular beam epitaxy growth, and fabrication of III-V bismide optoelectronic devices, which are of great importance in modern applications of telecommunication, gas sensing, environment monitoring, etc. In the current room-temperature continuous-wave operational GaSb-based type-I InGaAsSb/AlGaInAsSb quantum well laser diodes in 3-4 um mid-wavelength range, the lasing wavelength and performance of the devices are limited due to the lack of hole confinement in the active regions. In this dissertation, a novel GaSb-based GaInAsSbBi material is proposed to replace the conventional InGaAsSb material in the quantum well region, which enables the laser diodes achieve up to 4 µm …


Quantum Dot Deposition Into Pdms And Application Onto A Solar Cell, Christopher Marcus Botros, Richard N. Savage Dec 2012

Quantum Dot Deposition Into Pdms And Application Onto A Solar Cell, Christopher Marcus Botros, Richard N. Savage

Master's Theses

Research to increase the efficiency of conventional solar cells is constantly underway. The goal of this work is to increase the efficiency of conventional solar cells by incorporating quantum dot (QD) nanoparticles in the absorption mechanism. The strategy is to have the QDs absorb UV and fluoresce photons in the visible region that are more readily absorbed by the cells. The outcome is that the cells have more visible photons to absorb and have increased power output. The QDs, having a CdSe core and a ZnS shell, were applied to the solar cells as follows. First, the QDs were synthesized …


Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li Aug 2012

Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li

Graduate Theses and Dissertations

The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring the semiconductor nanocrystals. Numerous recipes were developed for the preparation of colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to the lack of thorough understanding to those systems, the synthesis chemistry is still on the empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model system to investigate its molecular mechanism and formation process, ODE was identified as the reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature synthesis methods developed. In this model system, we not only proved …


The Design And Fabrication Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Robert Gonsalves Feb 2012

The Design And Fabrication Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Robert Gonsalves

Master's Theses

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. A syringe containing a room temperature CdSe solution was interfaced to the microfluidic reactor by using Poly (dimethylsiloxane) (PDMS) as an …


Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim Sep 2011

Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim

Electronic Thesis and Dissertation Repository

The discovery of graphene - a 2D material with superior physical properties - in 2004 was important for the intensive global research to find alternatives to three-dimensional (3D) semiconductor materials in industry. At the same time there have been exciting advances for 2D magnetic materials on the nanometer scale. The superior properties of graphene are mainly attributed to its crystal structure and its relatively short-range interactions. These properties show that natural and artificial 2D materials are promising for new applications.

In this thesis we have carried out a comprehensive investigation of the effects of the 2D lattice structures, the roles …


Synthesis And Characterization Of Cdse-Zns Core-Shell Quantum Dots For Increased Quantum Yield, Joshua James Angell Jul 2011

Synthesis And Characterization Of Cdse-Zns Core-Shell Quantum Dots For Increased Quantum Yield, Joshua James Angell

Master's Theses

Quantum dots are semiconductor nanocrystals that have tunable emission through changes in their size. Producing bright, efficient quantum dots with stable fluorescence is important for using them in applications in lighting, photovoltaics, and biological imaging. This study aimed to optimize the process for coating CdSe quantum dots (which are colloidally suspended in octadecene) with a ZnS shell through the pyrolysis of organometallic precursors to increase their fluorescence and stability. This process was optimized by determining the ZnS shell thickness between 0.53 and 5.47 monolayers and the Zn:S ratio in the precursor solution between 0.23:1 and 1.6:1 that maximized the relative …


The Design And Manufacture Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Gonsalves Jun 2011

The Design And Manufacture Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Gonsalves

Materials Engineering

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of silicon and Pyrex glass. Microfabrication techniques were used to etch the channels into the silicon wafer. Holes were wet-drilled into Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was aligned to the etched silicon wafer and both were anodically bonded to complete the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. Bulk CdSe solution was mixed at room temperature and treated as a single injection. The syringe containing …


Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu Jun 2010

Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu

Master's Theses

Gallium nitride (GaN) light emitting diodes (LED) embody a large field of research that aims to replace inefficient, conventional light sources with LEDs that have lower power, higher luminosity, and longer lifetime. This thesis presents an international collaboration effort between the State Key Laboratory for Mesoscopic Physics in Peking University (PKU) of Beijing, China and the Electrical Engineering Department of California Polytechnic State University, San Luis Obispo. Over the course of 2 years, Cal Poly’s side has simulated GaN LEDs within the pure blue wavelength spectrum (460nm), focusing specifically on the effects of reflection gratings, transmission gratings, top and bottom …


Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith Jan 2009

Characterization Of A Viscoelastic Response From Thin Metal Films Deposited On Silicon For Microsystem Applications, Steven L. Meredith

Master's Theses

Understanding the mechanisms that control the mechanical behavior of microscale actuators is necessary to design an actuator that responds to an applied actuation force with the desired behavior. Micro actuators which employ a diaphragm supported by torsional hinges which deform during actuation are used in many applications where device stability and reliability are critical. The material response to the stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. A fully recoverable non-linear viscoelastic response has been observed in electrostatically driven micro actuators employing torsional hinges of silicon covered with thin metal films. …