Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque May 2022

Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque

Doctoral Dissertations

Carbon-based electrodes that are integrable with CMOS readout electrodes possess great potential in a wide range of cutting-edge applications. The primary scientific contribution is the development of a processing sequence which can be implemented on CMOS chips to fabricate pyrolyzed carbon microelectrodes from 3D printed polymer microstructures to develop lab-on-CMOS monolithic electrochemical sensor systems. Specifically, optimized processing conditions to convert 3D printed polymer micro- and nano-structures to carbonized electrodes have been explored in order to obtain sensing electrodes for lab-on- CMOS electrochemical systems. Processing conditions have been identified, including a sequel of oxidative and inert atmosphere anneals to form pyrolyzed …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Green-Route Synthesis Of Halide Perovskite Materials And Their Optoelectronic Properties, Xiaobing Tang Jan 2022

Green-Route Synthesis Of Halide Perovskite Materials And Their Optoelectronic Properties, Xiaobing Tang

Theses and Dissertations--Chemical and Materials Engineering

Colloidal semiconductor quantum dots (QDs), also called as nanocrystals (NCs), are a class of functional materials with extraordinary properties, which are different from their bulk counterparts and benefit from their exclusive quantum confinement (size) effect. Semiconductor exhibits the quantum confinement effect when the characteristic size of the semiconductor is comparable to or smaller than the de Broglie wavelength of the electron wave function and/or the exciton Bohr diameter of the bulk semiconductor. In recent years, metal halide perovskite NCs, as next-generation semiconductor materials for lighting and display, have aroused a wide attention due to their excellent optoelectronic properties. However, traditional …