Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Ceramic Materials

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 49

Full-Text Articles in Manufacturing

Efficient Sintering Of Lunar Soil Using Concentrated Sunlight, Diprajit Biswas May 2023

Efficient Sintering Of Lunar Soil Using Concentrated Sunlight, Diprajit Biswas

Electronic Theses and Dissertations

Construction material is one crucial need for long-term habitation on the moon. When concentrated for high heat flux, solar radiation can heat lunar soil or regolith until it sinters at temperatures above 900°C. The solid, sintered soil simulant can be used as construction material. This work explores the conditions leading to effective lunar soil sintering for both direct and indirect irradiated sintering. Lunar soil simulants were sintered using concentrated light from a xenon-arc lamp with varying heat flux intensity. During direct sintering of LHS-1, a sintering range of 860°C-1140°C corresponding to a peak heat flux of 105-120 kW/m2 was identified …


Modified Reactive Sputter Deposition Of Titanium Nitride Thin Films Via Hipims With Kick-Pulse And Improvement Of The Structure-Zone Model, Andrew Miceli Jan 2023

Modified Reactive Sputter Deposition Of Titanium Nitride Thin Films Via Hipims With Kick-Pulse And Improvement Of The Structure-Zone Model, Andrew Miceli

UNF Graduate Theses and Dissertations

Direct current (DC) and radio frequency (RF) sputtering methods have been commonplace in industry for several decades and widely studied in literature. Hard films of nitrides, such as titanium nitride (TiN), have been deposited using reactive DC sputtering onto cutting tools and medical devices extensively as well. For these applications, the films require excellent adhesion, high density, and high hardness. High-Power Impulse Magnetron Sputtering (HIPIMS) has emerged over the last several years as a method to produce films with increased density and mechanical properties. Process-structure-property relationships for reactive HIPIMS are not yet well developed. Additionally, conventional HIPIMS suffers from relatively …


Advanced Microstructural Characterization Of Functionally Graded Dental Ceramic Material For Materials-Informed Finishing, Angani Vigneswaran Jan 2023

Advanced Microstructural Characterization Of Functionally Graded Dental Ceramic Material For Materials-Informed Finishing, Angani Vigneswaran

Theses and Dissertations--Manufacturing Systems Engineering

Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has gained popularity as the choice of material for dental prosthetics. Ivoclar Vivadent’s IPS e.max ZirCAD Prime dental ceramic incorporates a unique gradient technology that varies the yttria content over the thickness of the material. The top layer is composed of 5Y-TZP which is desired for its optical properties while the bottom layer is composed of a much stronger 3Y-TZP. In between the two layers, 5Y-TZP and 3Y-TZP are mixed to form a transition layer. Varying the amount of yttria allows for more esthetically pleasing translucency in the visible areas of the restoration without compromising …


3d Printing Of Lunar Regolith Based Ceramics Via The Dlp Method, Ricardo Vasquez Nov 2022

3d Printing Of Lunar Regolith Based Ceramics Via The Dlp Method, Ricardo Vasquez

2022 MME Undergraduate Research Symposium

Ceramic parts generally have poor machinability due to their high hardness and high brittleness. Researchers and industries have overcome the difficulty of machining ceramics and have manufactured parts with intricate geometry by using pre-ceramic polymers in stereolithography (SLA) 3D printing and using slurries based on ceramic powder and photopolymer resin in digital light processing (DLP) 3D printing, among other methods. This presentation will discuss the processes involved in the 3D printing of ceramic and ceramic composite parts via the DLP technique. A vital step in ceramic 3D printing is to optimize the printing parameters for a specific slurry formulation in …


Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp Dec 2021

Processing Of Preceramic Polymers For Direct-Ink Writing, James W. Kemp

Doctoral Dissertations

Preceramic polymers are organosilicon polymers that, when pyrolyzed to above 1000°C, convert from a polymer to an amorphous ceramic. These polymers have been used for fiber spinning, polymer infiltration, and casting of materials but have recently gained interest for use as the feedstock material for additive manufacturing techniques. This work explores preceramic polymers being used for direct-ink writing (an additive manufacturing method) and many of the issues that occur with the polymers during curing and pyrolysis.

The first chapter of this dissertation provides a review of preceramic polymers, while the second and third chapters focus on the development of inks …


Automated Mini-Tubular Ceramic Production, Hunter Brooks, Daniel Freeman, Leo Taranta-Slack Dec 2021

Automated Mini-Tubular Ceramic Production, Hunter Brooks, Daniel Freeman, Leo Taranta-Slack

Mechanical Engineering

Researchers at Lawrence Livermore National Laboratory need a way to increase the rate of manufacturing of mini-tubular ceramics to be used in testing particulate air filters. This document outlines our process from researching and writing an initial scope of work all the way to fabricating and testing a final prototype. This journey takes us through the background research, ideation process and selection of a final design. We also detail the desired engineering specifications and our concept selection process. We dedicate a significant portion of this report to discussion of our final design. We delve into how it was manufactured as …


Reclamation Of Fused Silica From Investment Shells Used For Casting Steel, Samuel L. Holt Jan 2021

Reclamation Of Fused Silica From Investment Shells Used For Casting Steel, Samuel L. Holt

Electronic Theses and Dissertations

Fused silica is widely used for investment casting shell molds. Fused silica shells are discarded after being used for casting one time. This is due to the transformation of fused silica to beta cristobalite above 1652℉ (900℃). To reduce cost and waste of investment casting foundries, this study is exploring a method to inhibit transformation of fused silica and reclaim it from high temperature investment casting shells. This research has employed firing to minimalize fused silica transformation to cristobalite. The phase transformation is minimalized due to sintering and coarsening of the particles during firing. Coarsening reduces surface area to volume …


Study On The Viability Of Preparing Plaster Molds For Rapid Prototyping Of Complex Ceramic Parts Using The Lost Pla Method, Shelton F. Fowler Iv Nov 2020

Study On The Viability Of Preparing Plaster Molds For Rapid Prototyping Of Complex Ceramic Parts Using The Lost Pla Method, Shelton F. Fowler Iv

Honors College Theses

In the field of metal casting, cast parts often require an internal cavity to be made to meet design requirements. Frequently, these interior surfaces are not manufacturable through standard machining processes, and even when possible, they would most likely involve expensive and time-consuming operations. In order to avoid these machining costs, expendable ceramic or sand cores are manufactured and placed into the mold to allow the direct casting of complex internal geometries. This research seeks to use relatively inexpensive plastic 3D printing technology and the lost PLA casting process for the production of low-cost and rapidly producible ceramic cores. A …


Doping With Rare Earth Elements And Resultant Nano-Inclusions On The Electrical And Thermal Properties Of The Mis-Fit Layered Thermoelectric Oxide, Geoffroy Gauneau Jan 2020

Doping With Rare Earth Elements And Resultant Nano-Inclusions On The Electrical And Thermal Properties Of The Mis-Fit Layered Thermoelectric Oxide, Geoffroy Gauneau

Graduate Theses, Dissertations, and Problem Reports

Thermoelectric generators produce electricity by directly converting temperature differences into electrical energy through Seebeck effect. Thermoelectric generators possess many unique features, such as having no moving part and being very reliable with a relatively long lifespan once built. They are solid-state waste heat harvesters. With various waste heat available throughout many industries, thermoelectric generators could offer economically competitive renewable energy. The current state of the art thermoelectric materials includes materials with relatively toxic elements and must work under vacuum, making them quite expensive to produce. Among the various thermoelectric materials, ceramic oxides have been proved to be more chemically stable …


Bioprinting With Human Stem Cell-Laden Alginate-Gelatin Bioink And Bioactive Glass For Tissue Engineering, Krishna C. R. Kolan, Julie A. Semon, Bradley Bromet, D. E. Day, Ming-Chuan Leu Jul 2019

Bioprinting With Human Stem Cell-Laden Alginate-Gelatin Bioink And Bioactive Glass For Tissue Engineering, Krishna C. R. Kolan, Julie A. Semon, Bradley Bromet, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

Three-dimensional (3D) bioprinting technologies have shown great potential in the fabrication of 3D models for different human tissues. Stem cells are an attractive cell source in tissue engineering as they can be directed by material and environmental cues to differentiate into multiple cell types for tissue repair and regeneration. In this study, we investigate the viability of human adipose-derived mesenchymal stem cells (ASCs) in alginate-gelatin (Alg-Gel) hydrogel bioprinted with or without bioactive glass. Highly angiogenic borate bioactive glass (13-93B3) in 50 wt% is added to polycaprolactone (PCL) to fabricate scaffolds using a solvent-based extrusion 3D bioprinting technique. The fabricated scaffolds …


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Apr 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding …


Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu Aug 2018

Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. Presented in this paper is a further development of this process focusing on fabrication of functionally graded materials (FGM). A dynamic mixing mechanism was developed for mixing constituent ceramic pastes, and an extrusion control scheme was developed for fabricating specimens with desired material compositions graded in real time. FGM specimens with compositions graded between Al2O3 and ZrO2 were fabricated and ultimately densified by sintering to validate the effectiveness of the CODE process for FGM fabrication. Energy dispersive spectroscopy …


Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2018

Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …


Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao Jan 2018

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. …


Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through using Zr intermediate layers, Zr52.5Ti5Al10Ni14.6Cu17.9 metallic glass (MG) parts are successfully built on Ti-6Al-4V substrates by laser-foil-printing (LFP) additive manufacturing technology in which MG foils are laser welded layer-by-layer onto the substrate. The printed MG part is free of porosity, cracking and crystallization; additionally, its glass transition temperature, crystallization temperature, micro-hardness, and tensile strength are very similar to the original MG material. The Zr intermediate layers are aimed at preventing direct interaction between the first layer of MG foil and the Ti substrate; otherwise, the welded MG foils would peel …


Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70 ⁰C to melt the PCL. The part is then …


Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode Aug 2017

Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode

Mechanical and Aerospace Engineering Faculty Research & Creative Works

While cast iron is widely used in industry, a major limitation is the weldability of a dissimilar material onto cast iron due to hot cracking as a result of lack of ductility from graphite flakes. Consequently, a significant amount of preheat is often employed to reduce the cooling rate in the fusion zone, which, however, may lead to distortion of the welded parts. A potential remedy could be the Selective Laser Melting (SLM) process, where only small melt pools are created and thus the overall energy input is reduced. The present paper describes an investigation of the SLM process to …


Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70°C to melt the PCL. The part is then sintered …


Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser-Foil-Printing (LFP) is a novel laminated object manufacturing process for metal additive manufacturing. It fabricates three-dimensional metal parts by using a dual-laser system to weld and cut metal foils layer by layer. A main advantage of LFP is the higher cooling rate compared to powder-based laser additive manufacturing processes due to the thermal conductivity difference between foil and powder. This study focuses on the mechanical properties of 304L stainless steel parts built by the LFP process. The experimental results indicate that the yield strength and ultimate tensile strength of LFP fabricated 304L SS parts are higher by 9% and 8% …


Quality Improvement In Drilling Silicon By Using Micro Laser Assisted Drilling, Barkin Bakir Jan 2017

Quality Improvement In Drilling Silicon By Using Micro Laser Assisted Drilling, Barkin Bakir

The Hilltop Review

The micro-laser assisted drilling (µ-LAD) of monocrystalline silicon (100), using a diamond cutting tool coupled with a laser, was tested in order to improve the cutting edge quality of a drilled samples. The laser beam is transmitted through an optically transparent diamond drill bit and focused precisely at the tool-workpiece interface, where the material is under high pressure induced by the diamond tool. The influence of the laser power on the quality and the inner surface finish of the drilled materials is investigated. Different laser powers were used to carry out the experiments. The experimental results indicated that the µ-LAD …


Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming Leu, Gregory Hilmas Jan 2017

Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming Leu, Gregory Hilmas

Faculty Publications, Mechanical Engineering

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70°C to melt the PCL. The part is then sintered …


Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas Jan 2017

Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas

Faculty Publications, Mechanical Engineering

Ceramic On‐Demand Extrusion (CODE) is an additive manufacturing process recently developed to produce dense three‐dimensional ceramic components. In this paper, the properties of parts produced using this freeform extrusion fabrication process are described. High solids loading (~60 vol%) alumina paste was prepared to fabricate parts and standard test methods were employed to examine their properties including the density, strength, Young's modulus, Weibull modulus, toughness, and hardness. Microstructural evaluation was also performed to measure the grain size and critical flaw size. The results indicate that the properties of parts surpass most other ceramic additive manufacturing processes and match conventional fabrication techniques.


Microstructure And Properties Of Spark Plasma Sintered Moalb Ceramics, Ting Lou Dec 2016

Microstructure And Properties Of Spark Plasma Sintered Moalb Ceramics, Ting Lou

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Molybdenum aluminum boride (MoAlB) is a ternary transition metal boride which has promising aeronautic and nuclear applications. It inheres excellent properties of the binary transitional metal borides (e.g., MoB, ZrB2) such as high melting temperature, high hardness, and thermal conductivity. Besides, MoAlB is superior to MoB because: (1) the Al element provides an oxidation resistance at high temperatures; (2) its nanolaminated structure consisting of M-B layers with alternating Al layers results in a unique damage tolerance property. In this research, polycrystalline MoAlB have been successfully synthesized and simultaneously sintered using spark plasma sintering (SPS) from molybdenum boride (MoB) …


3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day Aug 2016

3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A major limitation of synthetic bone repair is insufficient vascularization of the interior region of the scaffold. In this study, we investigated the 3D printing of adipose derived mesenchymal stem cells (AD-MSCs) with polycaprolactone (PCL)/bioactive glass composite in a single process. This offered a three-dimensional environment for complex and dynamic interactions that govern the cell’s behavior in vivo. Borate based bioactive (13-93B3) glass of different concentrations (10 to 50 weight %) was added to a mixture of PCL and organic solvent to make an extrudable paste. AD-MSCs suspended in Matrigel was extruded as droplets using a second syringe. Scaffolds measuring …


Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Aug 2016

Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work describes a process by which zirconium diboride (ZrB2) parts may be fabricated using the Ceramic On-Demand Extrusion (CODE) process. An oxide-carbide-nitride system consisting of ceramic powders and pre-ceramic organics, designed to yield ZrB2 after reaction sintering, has been developed to produce an aqueous-based extrudate for subsequent processing in the CODE system. Pressurelessly sintered test specimens containing 1 wt% PVA binder achieve high relative density ≥ 99%. The viscoelastic response of the extrudate was characterized via spindle rheometry with a small sample adapter. Batches with 1 wt% PVA and 0.5 wt% Methocel show strong shear thinning characteristic, under …


Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content (< 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.


Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Aug 2016

Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Ceramic On-Demand Extrusion (CODE) process is a novel additive manufacturing process for fabricating dense ceramic components from aqueous pastes of high solids loading. In this study, 3 mol% Y2O3 stabilized tetragonal zirconia polycrystal (3Y-TZP) parts were fabricated using the CODE process. The parts were then dried in a humidity controlled environmental chamber and sintered under atmospheric pressure. Mechanical properties of the sintered parts were examined using ASTM standard test techniques, including density, Young’s modulus, flexural strength, Weibull modulus, fracture toughness and Vickers hardness. The microstructure was analyzed, and grain size was measured using scanning electron microscopy. …


A Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

A Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.


Design And Testing Of A Top Mask Projection Ceramic Stereolithography System For Ceramic Part Manufacturing, Dylan Robert De Caussin Jun 2016

Design And Testing Of A Top Mask Projection Ceramic Stereolithography System For Ceramic Part Manufacturing, Dylan Robert De Caussin

Master's Theses

Ceramic manufacturing is an expensive process with long lead times between

the initial design and final manufactured part. This limits the use of ceramic as a viable material unless there is a large project budget or high production volume associated with the part. Ceramic stereolithography is an alternative to producing low cost parts through the mixing of a photo curable resin and ceramic particles. This is an additive manufacturing process in which each layer is built upon the previous to produce a green body that can be sintered for a fully dense ceramic part.

This thesis introduces a new approach …