Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Manufacturing

Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas Jan 2017

Mechanical Characterization Of Parts Produced By Ceramic On‐Demand Extrusion Process, Amir Ghazanfari, Wenbin Li, Ming Leu, Gregory Hilmas

Faculty Publications, Mechanical Engineering

Ceramic On‐Demand Extrusion (CODE) is an additive manufacturing process recently developed to produce dense three‐dimensional ceramic components. In this paper, the properties of parts produced using this freeform extrusion fabrication process are described. High solids loading (~60 vol%) alumina paste was prepared to fabricate parts and standard test methods were employed to examine their properties including the density, strength, Young's modulus, Weibull modulus, toughness, and hardness. Microstructural evaluation was also performed to measure the grain size and critical flaw size. The results indicate that the properties of parts surpass most other ceramic additive manufacturing processes and match conventional fabrication techniques.


Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte Aug 2013

Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13-93B3) using the selective laser sintering (SLS) process. The pore size of the scaffolds varied from 400 to 1300 μm. The compressive strength of the scaffolds varied from 1.7 to 15.5 MPa …


Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2011

Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Particle size, binder content and the post-processing schedule are important parameters that affect the microstructure, and, hence, the mechanical properties of parts produced using the indirect selective laser sintering process. 13-93 bioactive glass, with mean particle sizes ranging from 10 μm to 44 μm, is mixed with different amounts of stearic acid binder to fabricate green scaffolds. Through the design of the post-processing schedule, the time required for postprocessing the green scaffolds is reduced from the initial 80 hrs to 12 hrs. The compressive strength varies from 41 MPa for a part with~60% porosity to 157 MPa for a part …


Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan Aug 2008

Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the Selective Laser Sintering (SLS) process, both flexural test bars and 3D fuel injector components have been fabricated with zirconium diboride (ZrB2) powder. Stearic acid was selected as the binder. Values of SLS process parameters were chosen such that the green parts could be built with sharp geometrical features and that the sintered parts could have good mechanical properties. After binder burnout and sintering, the SLS fabricated ZrB2 test bars achieved 80% theoretical density, and the average flexural strength of the sintered samples was 195 MPa. These values demonstrate the feasibility of the SLS process for …