Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 37 of 37

Full-Text Articles in Mechanical Engineering

Low-Fidelity Method For Rapid Aerostructural Optimisation And Design-Space Exploration Of Planar Wings, Jeffrey D. Taylor, Doug F. Hunsaker Apr 2021

Low-Fidelity Method For Rapid Aerostructural Optimisation And Design-Space Exploration Of Planar Wings, Jeffrey D. Taylor, Doug F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

During early phases of wing design, analytic and low-fidelity methods are often used to identify promising design concepts. In many cases, solutions obtained using these methods provide intuition about the design space that is not easily obtained using higher-fidelity methods. This is especially true for aerostructural design. However, many analytic and low-fidelity aerostructural solutions are limited in application to wings with specific planforms and weight distributions. Here, a numerical method for minimising induced drag with structural constraints is presented that uses approximations that apply to unswept planar wings with arbitrary planforms and weight distributions. The method is applied to the …


3d-Printed Wings With Morphing Trailing-Edge Technology, Benjamin C. Moulton, Douglas F. Hunsaker Jan 2021

3d-Printed Wings With Morphing Trailing-Edge Technology, Benjamin C. Moulton, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

In recent years, various groups have attempted to improve aircraft efficiency using wings with morphing trailing-edge technology. Most of these solutions are difficult to manufacture or have limited morphing capability. The present paper outlines a research effort to develop an easy to manufacture, fully 3D-printed morphing wing. This approach is advantageous due to the low cost, minimal man-hours required for manufacturing, and speed at which design iterations can be explored. Several prototypes were designed and tested and lessons learned from these iterations have been documented. Additionally, printer settings have been tested and catalogued to assist others attempting to reproduce these …


Sensitivity And Estimation Of Flying-Wing Aerodynamic, Propulsion, And Inertial Parameters Using Simulation, Jaden Thurgood, Douglas F. Hunsaker Jan 2021

Sensitivity And Estimation Of Flying-Wing Aerodynamic, Propulsion, And Inertial Parameters Using Simulation, Jaden Thurgood, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

This paper explores the difficulties of aircraft system identification, specifically parameter estimation, for a rudderless aircraft. A white box method is used in conjunction with a nonlinear six degree-of-freedom aerodynamic model for the equations of motion in order to estimate 33 parameters that govern the aerodynamic, inertial, and propulsion forces within the mathematical model. The analysis is conducted in the time-domain of system identification. Additionally, all the parameters are estimated using a single flight rather than a series of shorter flights dedicated to estimating specific sets of parameters as is typically done. A final flight plan is developed with a …


Practical Implementation Of A General Numerical Lifting-Line Method, Cory D. Goates, Douglas F. Hunsaker Jan 2021

Practical Implementation Of A General Numerical Lifting-Line Method, Cory D. Goates, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

A general numerical lifting-line method provides corrections to overcome the singularities inherent in the lifting-line downwash integrals in certain cases. These singularities have previously limited the scope of lifting-line theory to straight wings not in sideslip; in all other cases, more traditional numerical approaches to solving Prandtl's hypothesis fail to grid converge. However, this general numerical lifting-line method grid converges even for swept wings and wings in sideslip. In the current work, we apply the general numerical lifting-line method to any number of wings with arbitrary geometry. We also provide a dimensional derivation of the basic general numerical lifting-line equations …


Characterization Of The Common Research Model Wing For Low-Fidelity Aerostructural Analysis, Jeffrey D. Taylor, Douglas F. Hunsaker Jan 2021

Characterization Of The Common Research Model Wing For Low-Fidelity Aerostructural Analysis, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

A characterization of the Common Research Model (CRM) wing for low-fidelity aerostructural optimization is presented. The geometric and structural properties are based on the CAD geometries and finite-element models for the CRM wing and the undeflected Common Research Model Wing (uCRM). Three approximations are presented for the elastic axis from previously-published studies on wing boxes similar to the uCRM, and approximations of the flexural and torsional rigidity are presented from a previously-published study using the uCRM wing. The characterization presented in this paper is intended to be used within low-fidelity aerostructural analysis tools to facilitate rapid design optimization and exploratory …


Comparison Of Theoretical And High-Fidelity Aerostructural Solutions, Jeffrey D. Taylor, Douglas F. Hunsaker Jan 2021

Comparison Of Theoretical And High-Fidelity Aerostructural Solutions, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

As contemporary aerostructural research in aircraft design trends toward high-fidelity computational methods, aerostructural solutions based on theory are often neglected or forgotten. In fact, in many modern aerostructural wing optimization studies, the elliptic lift distribution is used as a benchmark in place of theoretical aerostructural solutions with more appropriate constraints. In this paper, we review several theoretical aerostructural solutions that could be used as benchmark cases for wing design studies, and we compare them to high-fidelity solutions with similar constraints. Solutions are presented for studies with 1) constraints related to the wing integrated bending moment, 2) constraints related to the …


Open Source Software Problems In Heat Transfer To Explore Assumptions And Models, Benjamin Pepper, Amir Behbahanian, Nick Roberts Jan 2021

Open Source Software Problems In Heat Transfer To Explore Assumptions And Models, Benjamin Pepper, Amir Behbahanian, Nick Roberts

Course Materials

Energy2D software can be downloaded here: http://energy.concord.org/energy2d/

After opening the application, choose File -> Open and select one of the .e2d files available for download here under additional files. Click the Run button to get started.

The main download has a document that provides a detailed description of the adaptation of a freely available software program, Energy2D, for problems focused on the exploration and limitations of assumptions made in models commonly used in an undergraduate heat transfer course. The motivation for creating homework problems that use Energy2D is to explore the accuracy and limitations of the models used in heat …