Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 1522

Full-Text Articles in Mechanical Engineering

Numerical Simulation Of A Cryogenic Spray, Neel Kishorkumar Shah Dec 2021

Numerical Simulation Of A Cryogenic Spray, Neel Kishorkumar Shah

Doctoral Dissertations and Master's Theses

Cryogenic sprays have many applications in modern engineering. Cooling of electronic equipment subject to high heat flows, surgical ablation of gastrointestinal mucosae or orbital maneuvering are a few examples of their versatility. However, the atomization of a cryogenic liquid is a complex process. During such an event, aerodynamic effects associated with secondary atomization are further affected by thermodynamic flashing. A better understanding of the characteristics of cryogenic sprays is then necessary to allow for improved design and optimization in applications. The overarching objective of this study is to document such characteristics. The numerical simulation was performed over cryogenic nitrogen spray …


State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr Dec 2021

State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr

Doctoral Dissertations and Master's Theses

Today, the exploration and exploitation of space continues to become a more common occurrence. All types of spacecraft (S/C) utilize various types of thermal management solutions to mitigate the effects of thermal loading from the unforgiving vacuum of space. Without an appropriately designed thermal system, components on-board the S/C can experience failure or malfunction due to fluctuations in temperatures either beyond the designed operational parameters or unstable oscillating temperatures. The purpose of this study is to perform a comprehensive review of technologies available today that are being used for thermal management onboard S/C in addition to investigating the means to …


Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari Dec 2021

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari

Electronic Theses and Dissertations

Extrusion-based 3D printing of thermoplastic polymer composites manufactures parts that have nonhomogenous, orthotropic, and process-dependent macro-scale material properties. As a part of the dissertation, research works were carried out to: • improve the interlayer mechanical properties and reduce the orthotropy, • use experimentally homogenized orthotropic material properties to numerically model the mechanical behavior of the non-homogenous orthotropic 3D printed parts, • create an efficient numerical thermal model to predict the process-dependent thermal history of the 3D printed part, and • aid the manufacturing process by selecting a suitable set of processing parameters based on a simplified sequentially coupled thermomechanical model. …


Development And Application Of A Novel Acoustic Microfluidic Technology For Single Cell Per Well Trapping And High-Resolution Analysis Of Cilia Motion In Chlamydomonas Reinhardtii, Mingyang Cui Dec 2021

Development And Application Of A Novel Acoustic Microfluidic Technology For Single Cell Per Well Trapping And High-Resolution Analysis Of Cilia Motion In Chlamydomonas Reinhardtii, Mingyang Cui

McKelvey School of Engineering Theses & Dissertations

Acoustic manipulation of cells and microorganisms is a label-free and contact-free technique with promise for biological and biomedical applications. When exposed to an ultrasonic standing wave field, particles suspended in microfluidic channels will be moved to pressure minima (nodes) or maxima (antinodes) due to the acoustic impedance mismatch between particles and the suspension medium. Cilia motion is fundamental to understanding biological and biomedical problems related to dysfunctional human cilia, including primary ciliary dyskinesia, blindness, and male infertility. However, in vivo and ex vivo mammalian ciliated cell research is laborious and time-consuming due to difficulty in growing, maintaining, and imaging these …


Defining The Role Of Elastic Fibers In Tendon Mechanics, Jeremy D. Eekhoff Dec 2021

Defining The Role Of Elastic Fibers In Tendon Mechanics, Jeremy D. Eekhoff

McKelvey School of Engineering Theses & Dissertations

Tendons serve as a linking component of the musculoskeletal system by transferring forces between muscle and bone. As such, the structural proteins of the tendon extracellular matrix are of vital importance for the tissue to function properly and maintain its mechanical integrity. Collagen is the principal constituent of tendon and makes up its aligned hierarchical organization. Other structural proteins, such as elastin, are in comparison understudied and not well understood in relation to tendon function. Elastin, the main component of elastic fibers, has unique mechanical properties including high extensibility, fatigue resistance, and elasticity; these properties are important for elastin-rich tissues …


Acoustic Radiation Force And Its Application For Cell Manipulation And Ion Channels Activation, Xiangjun Peng Dec 2021

Acoustic Radiation Force And Its Application For Cell Manipulation And Ion Channels Activation, Xiangjun Peng

McKelvey School of Engineering Theses & Dissertations

Sound is a stress wave that carries energy and momentum flux. Scattered sound waves can generate acoustic radiation force that can be used to manipulate particles or cells. This dissertation demonstrates the physics behind cell manipulation by ultrasound. The work begins with a detailed analysis of the mechanics of using standing surface acoustic waves to fabricate acoustic tweezers for contactless particle manipulation using acoustic radiation force. Models to design and analyze acoustic radiation force have traditionally relied on plane wave theories that cannot predict how standing surface acoustic waves can levitate cells in the direction perpendicular to the substrate. We …


A Parametric Computational Fluid Dynamics (Cfd) Study Of In-Line Horizontal Axis Wind Turbines (Hawts) With Yaw, North Alyster Yates Dec 2021

A Parametric Computational Fluid Dynamics (Cfd) Study Of In-Line Horizontal Axis Wind Turbines (Hawts) With Yaw, North Alyster Yates

Masters Theses

Because of the constant use of non-renewable fossil fuels, and the enormous impact they have on global warming and pollution, there has been a push to use more eco-friendly and renewable sources for power. One such form is wind power via turbines. The most common form, Horizontal Axis Wind Turbines (HAWTs), can generate massive amounts of power. However, they also have a serious flaw in their design. As the wind passes through the swept area of the blades and past the tower, it creates massive disturbances in the airflow. These disturbances are called a ‘wake’. When trying to create a …


The NTh-Order Comprehensive Adjoint Sensitivity Analysis Methodology For Response-Coupled Forward/Adjoint Linear Systems (NTh-Casam-L): Ii. Illustrative Application, Dan Gabriel Cacuci Dec 2021

The NTh-Order Comprehensive Adjoint Sensitivity Analysis Methodology For Response-Coupled Forward/Adjoint Linear Systems (NTh-Casam-L): Ii. Illustrative Application, Dan Gabriel Cacuci

Faculty Publications

This work illustrates the application of the nth-order comprehensive adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems (abbreviated as “nth-CASAM-L”) to a paradigm model that describes the transmission of particles (neutrons and/or photons) through homogenized materials, as encountered in radiation protection and shielding. The first-, second-, and third-order sensitivities of responses that depend on both the forward and adjoint particle fluxes are obtained exactly, in closed-form, underscoring the principles and methodology underlying the nth-CASAM-L. The results presented in this work underscore the fundamentally important role of the nth-CASAM-L in the quest …


Hydrogen Peroxide Vapor Decontamination Of Polylactic Acid Fibers, Alexandra Craig Dec 2021

Hydrogen Peroxide Vapor Decontamination Of Polylactic Acid Fibers, Alexandra Craig

Mechanical Engineering Theses

Electrospun fibers have attracted attentions in topical drug delivery due to the ability to modulate drug release at high drug loading. While the pharmaceutical properties of these drug-eluting fibers were reported elsewhere, the compatibility of these fibers with hydrogen peroxide vapor, an effective decontaminant, is not fully established. In this work, polylactic acid (PLA) microfibers loaded with acetylsalicylic acid (ASA) were electrospun to examine their compatibility with hydrogen peroxide vapor. Results suggested a strengthening effect of the PLA/ASA fibers due to intermolecular interactions of ASA with PLA, which modulated the in vitro drug release rates. After exposing PLA/ASA fibers to …


The NTh-Order Comprehensive Adjoint Sensitivity Analysis Methodology For Response-Coupled Forward/Adjoint Linear Systems (NTh-Casam-L): I. Mathematical Framework, Dan Gabriel Cacuci Dec 2021

The NTh-Order Comprehensive Adjoint Sensitivity Analysis Methodology For Response-Coupled Forward/Adjoint Linear Systems (NTh-Casam-L): I. Mathematical Framework, Dan Gabriel Cacuci

Faculty Publications

This work presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as “nth-CASAM-L”), which is conceived for obtaining the exact expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters (including boundary and initial conditions) underlying the respective forward/adjoint systems. Since many of the most important responses for linear systems involve the solutions of both the forward and the adjoint linear models that correspond to the respective physical system, the sensitivity analysis of such responses makes it necessary …


The NTh-Order Comprehensive Adjoint Sensitivity Analysis Methodology For Response-Coupled Forward/Adjoint Linear Systems (NTh-Casam-L): I. Mathematical Framework, Dan Gabriel Cacuci Dec 2021

The NTh-Order Comprehensive Adjoint Sensitivity Analysis Methodology For Response-Coupled Forward/Adjoint Linear Systems (NTh-Casam-L): I. Mathematical Framework, Dan Gabriel Cacuci

Faculty Publications

This work presents the mathematical framework of the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated as “nth-CASAM-L”), which is conceived for obtaining the exact expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters (including boundary and initial conditions) underlying the respective forward/adjoint systems. Since many of the most important responses for linear systems involve the solutions of both the forward and the adjoint linear models that correspond to the respective physical system, the sensitivity analysis of such responses makes it necessary …


The Development Of A Finite Element Model For Ballistic Impact Predictions, Richard Allen Perkins Dec 2021

The Development Of A Finite Element Model For Ballistic Impact Predictions, Richard Allen Perkins

Theses and Dissertations

Concrete is a widely used product and is an important application throughout industry due to its inexpensive cost and wide range of applications. This work focuses on understanding the behavior of high strength concrete in high strain rate ballistic impact loading scenarios. A finite element analysis was created with the implementation of the Concrete Damage and Plasticity Model 2 (CDPM2) to represent the material behavior. The model’s parameters were calibrated to existing literature and the results were analyzed by a comparison of the impact velocity to residual velocity and a qualitative assessment of the impact crater. The model captured the …


Predictive Computational Materials Modeling With Machine Learning: Creating The Next Generation Of Atomistic Potential Using Neural Networks, Mashroor Shafat Nitol Dec 2021

Predictive Computational Materials Modeling With Machine Learning: Creating The Next Generation Of Atomistic Potential Using Neural Networks, Mashroor Shafat Nitol

Theses and Dissertations

Machine learning techniques using artificial neural networks (ANNs) have proven to be effective tools to rapidly mimic first principles calculations. These tools are capable of sub meV/atom accuracy while operating with linear scaling with respect to the system size. Here novel interatomic potentials are constructed based on the rapid artificial neural network (RANN) formalism. This approach generates precise force fields for various metals that have historically been difficult to describe at the atomic scale. These force fields can be utilized in molecular dynamics simulations to provide new physical insights. The RANN formalism, which is incorporated into a LAMMPS molecular dynamics …


Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown Dec 2021

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown

Theses and Dissertations

BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to …


A Data-Driven Approach For The Investigation Of Microstructural Effects On The Effective Piezoelectric Responses Of Additively Manufactured Triply Periodic Bi-Continuous Piezocomposite, Wenhua Yang Dec 2021

A Data-Driven Approach For The Investigation Of Microstructural Effects On The Effective Piezoelectric Responses Of Additively Manufactured Triply Periodic Bi-Continuous Piezocomposite, Wenhua Yang

Theses and Dissertations

A two-scale model consisting of ceramic grain scale and composite scale are developed to systematically evaluate the effects of microstructures (e.g., residual pores, grain size, texture) and geometry on the piezoelectric responses of the polarized triply periodic bi-continuous (TPC) piezocomposites. These TPC piezocomposites were fabricated by a recently developed additive manufacturing (AM) process named suspension-enclosing projection-stereolithography (SEPS) under different process conditions. In the model, the Fourier spectral iterative perturbation method (FSIPM) and the finite element method will be adopted for the calculation at the grain and composite scale, respectively. On the grain scale, a DL approach based on stacked generative …


Modeling The Ballistic Limit Of Fragment Simulating Projectiles Impacting A36 Mild Steel Spaced Armor Configurations, Daniel H. Rios-Estremera Dec 2021

Modeling The Ballistic Limit Of Fragment Simulating Projectiles Impacting A36 Mild Steel Spaced Armor Configurations, Daniel H. Rios-Estremera

Theses and Dissertations

Terminal ballistics study multivariate behavior and aftermath of projectile and target interactions. Tests and models are often based on monolithic armors, however, layered and spaced armors are common in real world applications. Such configurations add complexities that require research to understand their effects on terminal ballistics. The ballistic limit velocity (V50) represents the speed where armor perforation probability is 50%. It is used for quantitative comparison of protection capabilities for different armors. This research studied the V50 of spaced and layered A36 steel armors against fragment simulating projectiles (FSPs). Four methods for estimating armor V50 were evaluated and compared to …


Uncertainty-Aware Deep Learning For Prediction Of Remaining Useful Life Of Mechanical Systems, Samuel J. Cornelius Dec 2021

Uncertainty-Aware Deep Learning For Prediction Of Remaining Useful Life Of Mechanical Systems, Samuel J. Cornelius

Theses and Dissertations

Remaining useful life (RUL) prediction is a problem that researchers in the prognostics and health management (PHM) community have been studying for decades. Both physics-based and data-driven methods have been investigated, and in recent years, deep learning has gained significant attention. When sufficiently large and diverse datasets are available, deep neural networks can achieve state-of-the-art performance in RUL prediction for a variety of systems. However, for end users to trust the results of these models, especially as they are integrated into safety-critical systems, RUL prediction uncertainty must be captured. This work explores an approach for estimating both epistemic and heteroscedastic …


Effects Of Bonding Pressure And Lamina Thickness On Mechanical Properties Of Clt Composed Of Southern Yellow Pine, Cody S. Bates Dec 2021

Effects Of Bonding Pressure And Lamina Thickness On Mechanical Properties Of Clt Composed Of Southern Yellow Pine, Cody S. Bates

Theses and Dissertations

This study produced cross-laminated timber panels at a range of four lamina thickness (5/8, 1, 1 1/8, and 1 1/4 inch) and three bonding pressures (50, 125, 200 psi), producing a total of 12 panels for mechanical testing. The goal of this study is to observe how the thickness and pressure trends affect the mechanical properties of CLT. Tests include flatwise bending, flatwise shear, internal-bond, and delamination. Results showed that bending MOE decreases as the panel thickness increases while bonding pressure had no significance. Bending MOR was less significant for the thickness and more significant for pressure compared to the …


Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams Dec 2021

Study Of Alloy And Process Modifications To Design Hydrogen Resilient High Hardness Steels, William R. Williams

Theses and Dissertations

High hardness steels (HHS) are vulnerable to hydrogen embrittlement, which can lead to rapid degradation of mechanical properties. Improved resistance to hydrogen embrittlement would be beneficial to many industries including construction, automotive, and military. A comparison study was performed to assess the hydrogen susceptibility of select commercially available and in-house designed HHS alloys. Slow strain rate tensile tests, performed with specimens charged with various levels of hydrogen, provided a macroscopic view of the onset of hydrogen embrittlement. Hydrogen permeation and thermal desorption spectroscopy tests determined the uptake and diffusivity of hydrogen through the material. The evaluation of hydrogen susceptibility for …


Airfoil Flow Optimized Control With An Upstream Cylinder, Nicole Steiner Dec 2021

Airfoil Flow Optimized Control With An Upstream Cylinder, Nicole Steiner

Fall Student Research Symposium 2021

The purpose of this research is to optimize the aerodynamic performance of an airfoil with an upstream cylinder by neural network artificial intelligence. The effects of an upstream oscillating cylinder on the aerodynamic performance of an airfoil are also studied. This paper reports the effects oscillating frequency of the cylinder and the Reynolds number on the lift/drag ratio of the airfoil. The frequency has a complicated correlation with the lift/drag ratio, while the Reynolds number is found to have a positive correlation with the lift/drag ratio. The optimized case is found to have a lift/drag ratio of 1.7319, which is …


Smooth Muscle Cells Affect Differential Nanoparticle Accumulation In Disturbed Blood Flow-Induced Murine Atherosclerosis, Hunter Miller, Morgan A. Schake, Badrul Alam Bony, Evan T. Curtis, Conner C. Gee, Ian Mccue, Thomas J. Ripperda Jr., Yiannis S. Chatzizisis, Forrest Kievit, Ryan M. Pedrigi Dec 2021

Smooth Muscle Cells Affect Differential Nanoparticle Accumulation In Disturbed Blood Flow-Induced Murine Atherosclerosis, Hunter Miller, Morgan A. Schake, Badrul Alam Bony, Evan T. Curtis, Conner C. Gee, Ian Mccue, Thomas J. Ripperda Jr., Yiannis S. Chatzizisis, Forrest Kievit, Ryan M. Pedrigi

Department of Mechanical and Materials Engineering: Faculty Publications

Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, …


Microfabricated Platforms To Investigate Cell Mechanical Properties, Amir M. Esfahani, Grayson Minnick, Jordan Rosenbohm, Haiwei Zhai, Xiaowei Jin, Bahareh Tajvidi Safa, Justin Brooks, Ruiguo Yang Dec 2021

Microfabricated Platforms To Investigate Cell Mechanical Properties, Amir M. Esfahani, Grayson Minnick, Jordan Rosenbohm, Haiwei Zhai, Xiaowei Jin, Bahareh Tajvidi Safa, Justin Brooks, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Mechanical stimulation has been imposed on living cells using several approaches. Most early investigations were conducted on groups of cells, utilizing techniques such as substrate deformation and flow-induced shear. To investigate the properties of cells individually, many conventional techniques were utilized, such as AFM, optical traps/optical tweezers, magnetic beads, and micropipette aspiration. In specific mechanical interrogations, microelectro- mechanical systems (MEMS) have been designed to probe single cells in different interrogation modes. To exert loads on the cells, these devices often comprise piezo-electric driven actuators that attach directly to the cell or move a structure on which cells are attached. Uniaxial …


A Survey Of Stainless Steel In Medical And Surgical Application, Noah Slack, Clint Balch Dec 2021

A Survey Of Stainless Steel In Medical And Surgical Application, Noah Slack, Clint Balch

ME 4133/6133 Mechanical Metallurgy

Stainless steels can be separated into four families based on the microstructure of the material: Austenitic, Ferritic, Martensitic, and Duplex. Each family provides a specific set of advantages and disadvantages, and material selection should be based on the specific application the material will be used for. For this study, the processing, microstructure, and performance of the four families of stainless steels will be compared in the context of medical device applications. The most important factors in medical device materials are biocompatibility, surface properties, mechanical properties and life span/corrosion resistance. This study will focus on medical devices that will be permanently …


The Process-Structure-Property-Performance Of Aisi 1020​, Jonathan Wellman, Tate James, Robbie Christman, Brian Broom Dec 2021

The Process-Structure-Property-Performance Of Aisi 1020​, Jonathan Wellman, Tate James, Robbie Christman, Brian Broom

ME 4133/6133 Mechanical Metallurgy

AISI 1020 is widely used in many different industries due to its high strength, high ductility, high machinability, and good weldability. AISI 1020 has a number of applications. Low carbon steel can be used on a macroscale to build bridges, and low carbon steel can be used on smaller scales such as Lawnmower blades. Low carbon steel is the material of choice for lawn mower blades because of its ability to bend before it breaks. The ductile attribute of low carbon steel also has many other benefits.


Ti-6al-7nb Utilization In Surgical Implants, Michael O. Fleming Dec 2021

Ti-6al-7nb Utilization In Surgical Implants, Michael O. Fleming

ME 4133/6133 Mechanical Metallurgy

This presentation discusses the processing, structure, properties, and performance of Ti-6Al-7Nb in relation to use as a surgical implant.


Quantitative Characterization Of Complex Systems—An Information Theoretic Approach, Aditya Akundi, Eric Smith Dec 2021

Quantitative Characterization Of Complex Systems—An Information Theoretic Approach, Aditya Akundi, Eric Smith

Manufacturing & Industrial Engineering Faculty Publications and Presentations

A significant increase in System-of-Systems (SoS) is currently observed in the social and technical domains. As a result of the increasing number of constituent system components, Systems of Systems are becoming larger and more complex. Recent research efforts have highlighted the importance of identifying innovative statistical and theoretical approaches for analyzing complex systems to better understand how they work. This paper portrays the use of an agnostic twostage examination structure for complex systems aimed towards developing an information theorybased approach to analyze complex technical and socio-technical systems. Towards the goal of characterizing system complexity with information entropy, work was carried …


Process Improvement Of Honeysuckle Biscuits And Bakery, Jevon Franklin, Kaela Bellamy, Manuel Quintal, Suheyl Polat Dec 2021

Process Improvement Of Honeysuckle Biscuits And Bakery, Jevon Franklin, Kaela Bellamy, Manuel Quintal, Suheyl Polat

Senior Design Project For Engineers

Honeysuckle Biscuits and Bakery is a locally owned restaurant in Downtown Kennesaw, Georgia. Mitch and Lori Phillips, the owners, opened the restaurant in 2018. The restaurant serves breakfast (with biscuits as its specialty), lunch, coffee, desserts, and specialty cakes. As the business is beginning to outgrow itself, the project manager, Kaela Bellamy, felt it was a need to look at how to best accommodate the growing demand within the new space.


Development Of Pspp Map For Stainless Steel Alloys Used In A Marine Environment, Jarrett D. Hawkins Dec 2021

Development Of Pspp Map For Stainless Steel Alloys Used In A Marine Environment, Jarrett D. Hawkins

ME 4133/6133 Mechanical Metallurgy

A process-structure-properties-performance map will be created for these alloys focusing on the modification of the structure or composition and outlining the processes required and the affected properties. A thorough review of different chemical alloys, grain refining methods, and grain boundary compositions for several alloys and their corresponding property effects. Also plan to review material treatment processes and standard refining methods for stainless steels. The performance of these metals will be evaluated for property requirements in regards to strength, toughness, with an emphasis on corrosion resistance.


Nylon6-Montmorillonite Nanocomposites: Synthesis, Structure And Properties, Ahmed Mahmoud Abdel Gawad Dec 2021

Nylon6-Montmorillonite Nanocomposites: Synthesis, Structure And Properties, Ahmed Mahmoud Abdel Gawad

Archived Theses and Dissertations

Layered silicate clays have been used for decades as filler materials to enhance mechanical and thermal properties of polymers. Recently, efforts have focused on separating the layers of the clay with the purpose of forming clay-polymer nanocomposites. Investigations have been addressing the enhancement of mechanical and thermal properties of these materials. In this study, 5wt% of commercial montmorillonite clay (Cloisite Na+) and organically-modified montmorillonite (OMMT) clays (Cloisite 15A and Cloisite 30B) were compounded with nylon6. Nylon6/layered silicate nanocomposites were fabricated using melt compounding and solution compounding techniques. Nanoindentation, x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), melt flow index (MFI) and …


O1 Tool Steel Presentation, Albert R. Nicholson, Jake Clemens, Spencer Shumate, Adam Cooper Dec 2021

O1 Tool Steel Presentation, Albert R. Nicholson, Jake Clemens, Spencer Shumate, Adam Cooper

ME 4133/6133 Mechanical Metallurgy

Presentation Powerpoint regarding details of O1 Tool Steel